BOUNDARY EFFECT REDUCTION IN KERNEL ESTIMATION OF CHOSEN FUNCTIONAL CHARACTERISTICS OF RANDOM VARIABLE

Authors

  • Aleksandra Katarzyna Baszczyńska Uniwersytet Łódzki, Wydział Ekonomiczno-Socjologiczny, Katedra Metod Statystycznych

DOI:

https://doi.org/10.29015/cerem.216

Keywords:

kernel estimation, boundary effect, reflection method, gross national product per capita

Abstract

For a random variable with bounded support, the kernel estimation of functional characteristics may lead to the occurrence of the so-called boundary effect. In the case of the kernel density estimation it can mean an increase of the estimator bias in the areas near the ends of the support, and can lead to a situation where the estimator is not a density function in the support of a random variable. In the paper the procedures for reducing boundary effect for kernel estimators of density function, distribution function and regression function are analyzed. Modifications of the classical kernel estimators and examples of applications of these procedures in the analysis of the functional characteristics relating to gross national product per capita are presented. The advantages of procedures are indicated taking into account the reduction of the bias in the boundary region of the support of the random variable considered.

References

Albers G. M., (2012), Boundary Estimation of Densities with Bounded Support, Swiss Federal Institute of Technology, Zurich, https://stat.ethz.ch/research/mas_theses/2012/Martina_Albers [18.11.2015]

Baszczyńska A., (2015), Bias Reduction in Kernel Estimator of Density Function in Boundary Region, Quantitative Methods in Economics, w druku.

Bierens H. J. (1987), Kernel Estimators of Regression Functions, w: Truman F. Bewley (ed.), Advances in Econometrics: Fifth World Congress, Cambridge University Press, 99-14.

Domański C., Pekasiewicz D., Baszczyńska A., Witaszczyk A. (2014), Testy statystyczne w procesie podejmowania decyzji, Wydawnictwo Uniwersytetu Łódzkiego, Łódź.

Härdle W. (1994), Applied Nonparametric Regression, Cambridge University Press, Cambridge.

Li Q., Racine J. S. (2007), Nonparametric Econometrics. Theory and Practice, Princeton University Press, Princeton and Oxford.

Jones M. C. (1993), Simple Boundary Correction for Kernel Density Estimation, Statistics and Computing, 3, 135-146.

Jones M. C., Foster P. J. (1996), A Simple Nonnegative Boundary Correction Method for Kernel Density Estimation, Statistica Sinica, 6, 1005-1013.

Karunamuni R. J., Alberts T. (2005), On Boundary Correction in Kernel Density Estimation, Statistical Methodology, 2, 191-212.

Karunamuni R. J., Zhang (2008),Some Improvements on a Boundary Corrected Kernel Density Estimator, Statistics and Probability Letters, 78, 497-507.

Koláček J., Karunamuni R. J., (2009), On Boundary Correction in Kernel Estimation of ROC Curves, Australian Journal of Statistics, 38, 17-32.

Koláček J., Karunamuni R. J., (2012), A Generalized Reflection Method for Kernel Distribution and Hazard Function Estimation, Journal of Applied Probability and Statistics, 6, 73-85.

Koláček J., Poměnková J., (2006), A Comparative Study of Boundary Effects for Kernel Smoothing, Australian Journal of Statistics, 35, 281-288.

Kulczycki P. (2005), Estymatory jądrowe w analizie systemowej, Wydawnictwa Naukowo-Techniczne, Warszawa.

Horová I., Koláček J., Zelinka J. (2012), Kernel Smoothing in MATLAB. Theory and Practice of Kernel Smoothing, World Scientific, New Jersey.

Silverman B.W. (1996), Density Estimation for Statistics and Data Analysis, Chapman and Hall, London.

Wand M. P., Jones M.C. (1995), Kernel Smoothing, Chapman and Hall, London.

Downloads

Published

2016-10-15