Miejsce metody DEMATEL w rozwiązywaniu złożonych zadań decyzyjnych

Autor

  • Mirosław Dytczak AGH Akademia Górniczo-Hutnicza Wydział Zarządzania, Katedra Zarządzania w Energetyce Pracownia Zastosowań Metod Wielokryterialnych
  • Grzegorz Ginda AGH Akademia Górniczo-Hutnicza Wydział Zarządzania, Katedra Zarządzania w Energetyce Pracownia Zastosowań Metod Wielokryterialnych

DOI:

https://doi.org/10.29015/cerem.193

Słowa kluczowe:

DEMATEL, rozwój, zastosowanie, wspomaganie złożonych decyzji, zarządzanie

Abstrakt

Metoda DEMATEL została opracowana w latach 70. XX w. jako narzędzie umożliwiające identyfikację roli elementów łańcucha przyczynowo-skutkowego. Utworzono ją z myślą o rozwiązywaniu problemów gospodarczych, społecznych i ekonomicznych współczesnego świata. W ostatnich kilkunastu latach zainteresowano się nią ponownie. Dzięki prostocie zasad przetwarzania informacji na temat bezpośrednich powiązań elementów oraz elastyczności znalazła liczne zastosowania w rozwiązywaniu złożonych zagadnień decyzyjnych znacznie odbiegających od jej pierwotnego przeznaczenia. Obecnie jest wykorzystywana także w połączeniu z innymi narzędziami przetwarzania informacji i wspomagania decyzji. Zasila je w niezbędne dane lub korzysta z nich do pozyskania danych wejściowych. Używa się jej również do poszerzenia funkcjonalności narzędzi stosowanych we wspomaganiu decyzji. Szczegóły na ten temat przedstawiono w artykule.

Bibliografia

Aung Z.Z., Watanabe K. (2010), Modeling Inoperability Propagation Using Bayesian Networks, w: Critical Infrastructure Protection IV, IFIP Advances in Information and Communication Technology, vol.342, pp. 199–212

Chen F.-H., Hsu T.-S., Tzeng G.-H. (2011), A balanced scorecard approach to establish a performance evaluation and relationship model for hot spring hotels based on a hybrid MCDM model combining DEMATEL and ANP, „International Journal of Hospitality Management”, vol.30(4), pp. 908–932.

Chen P.-Y., C.-C. Chang (2010), The analysis of service acceptance framework for social games based on extensive technology acceptance model [w:] Proceedings of PICMET '10: Technology Management for Global Economic Growth (PICMET), pp. 1–11.

Chen S.-J., Hwang C.-L. (1992), Fuzzy MADM, Springer.

Dalalah D. (2009), A hybrid DEMATEL-TOPSIS Multi-Criteria Decision Making model [w:] IRI '09. IEEE International Conference on Information Reuse & Integration, pp. 428–430.

Dou Y., Sarkis J. (2013), A multiple stakeholder perspective on barriers to implementing China RoHS regulations, „Resources, Conservation and Recycling”, vol.81, pp. 92–104.

Dytczak M. (2010), Wybrane metody rozwiązywania wielokryterialnych problemów decyzyjnych w budownictwie, Politechnika Opolska, Opole.

Dytczak M., Ginda G. (2009), Identification of Building Repair Policy Choice Criteria Role, „Technological and Economic Development of Economy” (TEDE), vol.15(2), pp. 213–228.

Dytczak M., Ginda G. (2013), Is explicit processing of fuzzy direct influence evaluations in DEMATEL indispensable?, „Expert Systems with Applications”, vol.40(12), pp. 5027–5032.

Dytczak M., Ginda G. (2010), Struktury danych do wielokryterialnej oceny obiektów z równoległym użyciem wielu metod MCDA [w:] Ewaluacja rozwoju regionu w wymiarze społecznym, gospodarczym i środowiskowym. 10 lat Wydziału Zarządzania i Inżynierii Produkcji Politechniki Opolskiej, red. Malik K., Politechnika Opolska, Opole, s. 105–118.

Falatoonitoosi E., Ahmed S., Sorooshian S. (2014): Expanded DEMATEL for Determining Cause and Effect Group in Bidirectional Relations, „The Scientific World Journal” [article ID:103846, doi:10.1155/2014/103846].

Fontela E., Gabus A. (1976), Current perceptions of the world problematique [w:] World Modelling: a Dialogue, Eds. Churchman C.W., Mason R.O., North Holland/Elsevier, Amsterdam, New York, pp. 81–87.

Fontela E., Gabus A. (1976a), DEMATEL Observer, DEMATEL 1976 Report, Batelle Geneva Research Institute, Geneva, Switzerland.

Lee H.-S., Tzeng G.-H., Yeih W., Wang Y.-J., Yang S.-C. (2013), Revised DEMATEL: Resolving the Infeasibility of DEMATEL, „Applied Mathematical Modelling”, vol.37(10–11), pp. 6746–6757.

Mizuyama H., Ishida K. (2007), Systematic Decision Making Process for Identifying the Contradictions to be Tackled by TRIZ to Accomplish Product Innovation, „Journal of Automation, Mobile Robotics & Intelligent Systems”, vol.1(4), pp. 21–29.

Navid B.J., Ismaeli S. (2012), Analyzing effective elements in agile supply chain, „Management Science Letters”, vol.2(1), pp. 369–378.

Opricovic S., Tzeng G.-H. (2003), Defuzzification within a Multicriteria Decision Model, „International Journal of Uncertainty, Fuzziness and Knowledge-based Systems – IJUFKS”, vol.11(5), pp. 635–652.

Saaty T.L., Tran L.T. (2007), On the invalidity of fuzzifying numerical judgments in the Analytic Hierarchy Process, „Mathematical and Computer Modelling”, vol.46(7–8), pp. 962–975.

Li C.-W., Tzeng G.-H. (2009), Identification of a threshold value for the DEMATEL method using the maximum mean de-entropy algorithm to find critical services provided by a semiconductor intellectual property mall, „Expert Systems with Applications”, vol.36, pp. 9891–9898.

Tseng M.-L. (2009), Using the extension of DEMATEL to integrate hotel service quality perceptions into a cause–effect model in uncertainty, „Expert Systems with Applications”, vol.36(5), pp. 9015–9023.

Tzeng G.-H., Chen W.-H., Yu R., Shih M.-L. (2010), Fuzzy decision maps: a generalization of the DEMATEL methods, „Soft Computing”, vol.14(11), pp. 1141–1150.

Wu W.-W., Lan L.W., Lee Y.-T. (2011), Exploring decisive factors affecting an organization's SaaS adoption: A case study, „International Journal of Information Management”, vol.31(6), pp. 556–563.

Zhü K. (2014), Fuzzy analytic hierarchy process: Fallacy of the popular methods, „European Journal of Operational Research”, vol.236(1), pp. 209–217.

Pobrania