Insider understanding of country development: a novel application of Optimal Control Theory and Data Envelopment Analysis for benchmarking performance of Chilean and Brazilian companies

  • Paulo Nocera Alves Junior University of São Paulo
  • Wilfredo F. Yushimito Universidad Adolfo Ibáñez , Chile
  • Jorge Pereira Gude Universidad Adolfo Ibáñez , Chile
  • Isotilia Costa Melo University of São Paulo, Brazil
  • Daisy Aparecida do Nascimento Rebelatto University of São Paulo, Brazil
Keywords: Data Envelopment Analysis (DEA), Optimal Control Theory (OCT), Dynamic Efficiency, Developing Countries, Inventory Control, Production-Inventory System, Benchmarking, Best Practices.


Aim: If companies manage their inventory inefficiently, inventory costs can increase significantly due to shortages, overstocking, and risks. Inventory management is critical for company’s success which, in turn, impacts on countries’ development. This paper aims to investigate the efficiency of inventory control systems of companies from Brazil and Chile through Optimal Control Theory and Data Envelopment Analysis.

Design/Research methods: Data was collected from Chilean and Brazilian companies covering different industries in which both countries are mostly dependent A new approach using OCT and DEA is applied for dealing with inventory, production, and demand in Dynamic DEA model to benchmark companies’ production-inventory systems.

Conclusions/findings: The results show efficient companies among evaluated industries. Such companies are related mainly to Brazilian commerce and Chilean exports. Based on findings, it was possible to identify patterns and relationship among companies and its inventory management.

Originality/value of the article: This paper fills a gap in studies including demand, production, and inventory in Dynamic DEA by using OCT to forewarn unrealistic results and observing companies’ behavior. Besides that, this approach is particularly useful for developing countries in this context, determining benchmarks for the most inefficient firms in each sector.

Implications of the research: The results show (1) which companies should focus more on improving inventory management, (2) which companies should be used as benchmarks, and (3) it highlights the reasons of different performance of companies in each country.

Limitations of the research: For future research, it is suggested including variables and analysis of social and environmental impacts.


Alves Junior P.N., Cari E.P.T. (2017), The use of optimal control theory as a benchmarking tool in production-inventory systems, in: Handbook of research on applied optimization methodologies in manufacturing systems, Yılmaz Ö.F., Tüfekçí S. (eds), IGI Global, Hershey, PA, pp. 284-308.

Banker R.D., Charnes A., Cooper W.W. (1984), Some models for estimating technical and scale inefficiencies in Data Envelopment Analysis, „Management Science”, vol. 30 no. 9, pp. 1078-1092.

Charnes A., Cooper W.W. (1962), Programming with linear fractional functionals, „Naval Research Logistics Quarterly”, vol. 9 no. 3-4, pp. 181-186.

Charnes, A., Cooper W.W., Rhodes E. (1978), Measuring the efficiency of decision making units, „European Journal of Operational Research”, vol. 2 no. 6, pp. 429-444.

Chilan C.M., Conway B.A. (2015), A reachable set analysis method for generating near-optimal trajectories of constrained multiphase systems, „Journal of Optimization Theory and Applications”, vol. 167 no. 1, pp. 161-194.

Cooper W.W., Seiford L.M., Tone K. (2007), Data Envelopment Analysis. A comprehensive text with models, applications, references and DEA-solver software, Springer, New York.

Correa C. (2013), Sonho Grande, Sextante/Gmt, São Paulo.

Debreu G. (1951), The coefficient of resource utilization, „Econometrica”, vol. 19, pp. 273-292.

Doupnik T.S., Hoyle J.B., Schaefer T.F. (2013), Advanced accounting, 11th edition, McGraw-Hill, New York.

Duan Y., Cao Y., Huo J. (2018), Optimal pricing, production, and inventory for deteriorating items under demand uncertainty. The finite horizon case, „Applied Mathematical Modelling”, no. 58, pp. 331-348.

Fallah-Fini S., Triantis K., Johnson A.L. (2014), Reviewing the literature on non-parametric dynamic efficiency measurement. State-of-the-art, „Journal of Productivity Analysis”, vol. 41 no. 1, pp. 51-67.

Farrell M.J. (1957), The measurement of productive efficiency, „Journal of the Royal Statistical Society”, vol. 120, pp. 253-290.

Feichtinger G., Hartl R. (1985), Optimal pricing and production in an inventory model, „European Journal of Operations Research”, vol. 19 no. 1, pp. 45-56.

Fernandes I.R.C., Melo I.C., Alves Junior P.N., Rbelatto D.A.N. (2016), Brazilian drugstores market. An overview of the main characteristics and players, in: Annals of XXIV SIMPEP (Symposium of Production Engineering), UNESP – State University of São Paulo, Bauru, pp. 2-14.

Fico C. (2008), Ditadura e democracia na América Latina. Balanço histórico e perspectivas, FGV Editora, Rio de Janeiro.

Gonzalez M., Espín J.J.L., Aparicio J., Giménez D., Pastor J.T. (2015), Using genetic algorithms for maximizing technical efficiency in Data Envelopment Analysis, „Procedia Computer Science”, vol. 51 no. 1, pp. 374-383.

Hatefi S.M., Jolai F., Iranmanesh S.H., Kor H. (2009), A new DEA model for classification intermediate measures and evaluating supply chain and its members’, in: 2009 International Conference on Computer Engineering and Technology, IEEE, Singapore, pp. 457-461.

Hochman G., Rajagopal D., Timilsina G., Zilberman D. (2011), The role of inventory adjustments in quantifying factors causing food price inflation, Policy Research Working Paper no. WPS 5744, [01.02.2019].

Holt C.C., Modigliani F., Muth J.F., Simon H.A. (1960), Planning production, Inventories, and work force, Prentice-Hall, New Jersey.

Lira Neto J.C. (2013), Getúlio, Companhia das Letras, São Paulo.

Ministry of Industry, Exterior Commerce and Services (2016), Brazilian companies: importers and exporters, [09.09.2017].

Mora P. (2009), Is branding an efficient tool for the wine industry ? Three case studies, „International Journal of Case Method Research & Application”, vol. 21 no. 2, pp. 128-138.

Sengupta J.K. (1999), A dynamic efficiency model using data envelopment analysis, „International Journal of Production Economics”, vol. 62 no. 3, pp. 209-218.

Sethi S.P., Thompson G.L. (2006), Optimal control theory. Applications to management science and economics, Springer, New York.

Stevenson W.J. (2012), Operations management. Theory and practice, McGraw-Hill/Irwin, New York.

Thompson G.L., Sethi S.P. (1980), Turnpike horizons for production planning, „Management Science”, vol. 26 no. 3, pp. 229-241.

Tone K. (2001), A slacks-based measure of efficiency in data envelopment analysis, „European Journal of Operational Research”, vol. 130 no. 3, pp. 498-509.

Tone K., Tsutsui M. (2014), Dynamic DEA with network structure. A slacks-based measure approach, „Omega”, vol. 42 no. 1, pp. 124-131.

Zhao Y., Zhao C., He M., Yang C. (2016). A state-feedback approach to inventory control. Analytical and empirical studies, „Production and Operations Management”, vol. 25, no. 3, pp. 535-547.

Zhu J. (2009), Quantitative models for performance evaluation and benchmarking. Data Envelopment Analysis with spreadsheets, Springer, New York.

Zhu J. (2014), Quantitative models for performance evaluation and benchmarking, Springer International Publishing, Cham.

Internet resources

Antofagasta (2017), Antofagasta PLC, [20.09.2017].

Arauco (2017). Celulosa Arauco y Constitucion S.A. – Sustainable Forest Product Manufacturer, [20.09.2017].

Azevedo (2017), Azevedo & Travassos S.A., [26.09.2017].

Besalco (2017), Besalco S.A., [26.09.2017].

Bío Bío (2017), Cementos Bío Bío S.A., [20.09.2017].

BMFBOVESPA (2017a), Cristal pigmentos do Brasil S.A., [20.09.2017].

BMFBOVESPA (2017b) Fertilizantes Heringer S.A., [20.09.2017].

BR Pharma (2017), BR Pharma, [21.09.2017].

CEG Rio (2017), Ceg Rio S.A. – Gas Natural Fenosa Brasil. [20.09.2017].

CMPC (2017), Empresas CMPC S.A. – Celulose Riograndense, [20.09.2017].

Codelco (2015), Codelco – Memorial Annual, [20.09.2017].

Codelco (2017), Codelco – Corporación Nacional del Cobre, Chile, [20.09.2017].

Commercial Department of Chile (2017), ProChile – Importadores – Directorio Exportador, [20.09.2017].

Concha y Toro (2017), Vina Concha y Toro S.A., [19.09.2017].

Copec (2017), Empresas Copec S.A. – History, [20.09.2017].

CristalChile (2017), Cristalerias de Chile S.A., [20.09.2017].

Edelpa (2017), Edelpa – Envases del Pacífico S.A., [20.09.2017].

Elecmetal (2017), Elecmetal – Compañía Electro Metalúrgica S.A., [20.09.2017].

Emiliana (2017), Viñedos Emiliana S.A. – Organic Vineyards, [19.09.2017].

Exame (2017), Revista Exame – Ranking do sertor de papel e celulose em 2016 (Ranking of the pulp and paper sector in 2016), [20.09.2017].

Ferbasa (2017), Ferbasa – Cia de Ferro Ligas da Bahia S.A., [20.09.2017].

Feria de Osorno (2017), Feria de Osorno S.A., [21.09.2017].

Financial Times (2017), The lean and mean approach of 3G Capital, [19.09.2017].

Forus (2017), Forus S.A., [28.09.2017].

Gasco (2017), Empresas Gasco S.A., [20.09.2017].

IBEVAR (2017), IBEVAR – Brazilian Institute of Retail and Consumer Executives, [27.09.2017].

Iguaçu (2017), Metalgráfica Iguaçu S.A., [20.09.2017].

Irani (2017), Celulose Irani S.A., [20.09.2017].

JBS Friboi (2017), Friboi-JBS S.A., [21.09.2017].

Josapar (2017), Josapar – Joaquim Oliveira Participações S.A., [19.09.2017].

Lix da Cunha (2017), Construtora Lix da Cunha S.A., [26.09.2017].

Nadir (2017), Nadir – Nadir Figueiredo Indústria e Comércio S.A., [20.09.2017].

OEC (2016a), The Observatory of Economic Complexity – Brazil, [09.09.2017].

OEC (2016b), The Observatory of Economic Complexity – Chile, [09.09.2017].

OECD (2017a), OECD Economic Outlook – Brazil. Preliminar, [20.09.2017].

OECD (2017b), OECD Economic Outlook – Chile – Preliminar, [20.09.2017].

Paranapanema (2017), Paranapanema S.A., [20.09.2017].

PDG (2017), PDG S.A., [26.09.2017].

Petrobras (2017), Petrobras – Petróleo Brasileiro S.A., [20.09.2017].

Polpaico (2017), Cemento Polpaico S.A. – LafargeHolcim, [20.09.2017].

Portales L.F. (2015), Los mitos de la democracia chilena, [26.09.2017].

Pucobre (2017), Pucobre – Sociedad Punta del Cobre S.A., [20.09.2017].

Salfacorp (2017), SalfaCorp S.A., [26.09.2017].

Santher (2017), Santher – Fábrica de Papel Santa Therezinha S.A., [20.09.2017].

Santiago Stock Exchange (2015), Comunicacion Interna N° 12.721, BCS/EditForm/CI 12721 Cancela inscripción a FASA.pdf [20.09.2017].

Sarimveis H., Patrinos P., Tarantilis C.D., Kiranoudis C.T. (2008), Dynamic modeling and control of supply chain systems. A review, „Computers & Operations Research”, vol. 35, pp. 3530-3561.

Schwager (2017), Schwager S.A., [20.09.2017].

Socovesa (2017), Empresas Socovesa S.A., [26.09.2017].

Sofruco (2017), Sociedad Agrícola La Rosa Sofruco S.A., [20.09.2017].

Soprocal (2017), Soprocal S.A., [20.09.2017].

SQM (2017), SQM – Sociedad Química y Minera S.A., [20.09.2017].

Tereos (2017), Tereos S.A., [19.09.2017].

Ultra (2017), Ultrapar – Ultra Participações S.A., [20.09.2017].

Vale (2017), Vale S.A., [20.09.2017].

Viconto (2016), Frutícola Viconto S.A. – Memória 2015, [20.09.2017].

Viconto (2017), Frutícola Viconto S.A., [20.09.2017].

World Bank (2016a), Brazil overview, [09.09.2017].

World Bank (2016b), Chile overview, [09.09.2017].