FORECASTING ECONOMIC DYNAMICS OF GERMANY USING CONDITIONAL MODELS (1992-2014)
DOI:
https://doi.org/10.29015/cerem.206Keywords:
robust procedures, quantile regression, ARMA, ARMAX, Hodrick - Prescott filter, TRAMO/SEATSAbstract
A great diversity characterizes economic dynamics of Germany over a long period of time. This refers to many time series: in some periods, they show large volatility which then moves into stability and stagnation phase, generating specific difficulties in a long-term forecasting of economic dynamics. The aim of the research is the attempt to determine the prognostic efficiency of conditional modelling and to answer the question whether or not conditional errors are significantly smaller than the unconditional ones in long-term forecasting.
The research showed that conditional errors (root mean square errors RMSE) of an ex- post forecast did not differ significantly from the unconditional RMSE. The decreasing RMSE of the ex-post forecast for Germany’s individual economic processes (with the assumption that an intercept occurs in the ARMA procedure) was correlated more strongly with the procedure of filtering economic time series than with the application of the conditional maximum likelihood method (ML) and robust procedures. The relationship between a decreasing RMSE of the ex-post forecast and the application of conditional ML methods occurs in ARMAX forecasts (with exogenous processes) for data filtered with Hodrick - Prescott (HP) filter. It is worth pointing out that a relatively high prognostic efficiency of the robust (resistant) estimation of quantile regression occurs for the economic series linearized with the help of the TRAMO/SEATS method.References
Athreya K. B., Lahiri S. N. (2006), Measure Theory and Probability Theory, Springer Science + Business Media LLC, New York.
Berndt E. R., Hall B. H., Hall R. E., Hausman J.A., (1974), Estimation and Inference in Non-Linear Structural Models, „Annals of Economic and Social Measurement‟, vol. 3.
Brandt S., (1999), Analiza danych. Metody statystyczne i obliczeniowe (tłumaczenie L. Szmanowski), wyd. drugie zmienione, Wyd. Naukowe PWN, Warszawa.
Chatfield Ch., (2000), Time-series forecasting, Chapman & Hall/CRC, London.
Clements M. P., Hendry D. F., (2004), Forecasting economic time series, Cambridge University Press, Cambridge.
Clements M. P., Hendry D. F., (2001), Forecasting Non-stationary Economic Time Series, The MIT Press, Cambridge.
Chow G. C., (1995), Ekonometria (przekład W. Jurek), Wyd. Naukowe PWN, Warszawa.
Chukwu E., N., (2003), Optimal Control of the Growth of Wealth of Nations, Taylor & Francis, London and New York.
DeLurgio S., A., (1998) Forecasting Principles and Applications, International Edition, Irwin McGraw - Hill, New York.
Edgeworth F., Y., (1888), On a New Method of Reducing Observations Relating to Several Quantities, „Philosophical Magazine‟, vol. 25.
Ekonometria, (Pod red. M. Gruszczyńskiego i M. Podgórskiej), (2003), SGH, Warszawa.
Green W., H., (2000), Econometric Analysis, Fourth Editon, Prentice Hall International, Inc, New Jersey.
Jajuga K., (1993), Statystyczna analiza wielowymiarowa, PWN, Warszawa.
Kosiorowski D., (2012a), Statystyczne funkcje głębi w odpornej analizie ekonomicznej, Wydawnictwo UE w Krakowie, Kraków.
Kosiorowski D., (2012b), Wstęp do statystyki odpornej. Kurs z wykorzystaniem środowiska R, Wydawnictwo UE w Krakowie, Kraków.
Kufel T., (2007), Ekonometria. Rozwiązywanie problemów z wykorzystaniem programu GRETL, Wyd. Naukowe PWN, Warszawa.
Lem S., (2010), Filozofia przypadku. Literatura w świetle empirii, Dzieła tom XXVI, Biblioteka Gazety Wyborczej, Warszawa.
Lopez - Pintado S., Romo J., (2006), Depth-Based Classification for Functional Data [w:] Series in Discrete Mathematics and Theoretical Computer Science, Liu R. Y., Serfling R., Souvaine D. L. (eds.), vol. 72, AMS.
Lopez - Pintado S., Romo J., (2009), On the Concept of Depth for Functional Data, „Journal of the American Statistical Association‟, vol. 104(486).
Maddala G., S., (2006), Ekonometria (Red. naukowy przekładu M. Gruszczyński), Wyd. Naukowe PWN, Warszawa.
Maronna R. A., Martin R., D., Yohai V., J., (2006), Robust Statistics - Theory and Methods, John Willey & Sons Chichester.
Prognozowanie gospodarcze. Metody i zastosowanie, (2001), (Pod red. M. Cieślak), Wyd. Naukowe PWN, Warszawa.
Statystyczna analiza danych z wykorzystaniem programu R, (2009), (Red. naukowa M. Walesiak, E. Gatnar), Wyd. Naukowe PWN, Warszawa.
Studemundt A. H., (2001), Using Econometrics. A Practical Guide, Fourth Edition, Addison Wesley Longman, Inc., New York.
Downloads
Published
Issue
Section
License
The aim of CEREM is to make scientific work available in accordance with the principle of open access. The rules mentioned below are important, as they enable CEREM and its publisher, the WSB Merito University in Wroclaw, to distribute the scientific work to a wide public while complying with specific legal requirements, at the same time protecting the rights of the authors.
The author transfers to the WSB Merito University in Wroclaw, free of charge and without territorial limitations, with all proprietary copyrights to the said piece of work in the understanding of the act of 4th February 1994 on copyrights and derivative rights (Journal of Laws of 1994, no. 24, item 83, as amended) on an exclusivity basis, i.e. the rights to:
1. Make the piece of work in question available via the Digital Library established by the WSB Merito University in Wroclaw.
2. Produce, record and reproduce in multiple copies the piece of work using any techniques whatsoever, including printing, reprography, magnetic recording and digital processing, and particularly its reproduction by recording on CDs and similar data carriers,
3. Use fragments of the piece of work for promotional purposes in publications, promotional materials, the Internet and Intranet type networks managed by the WSB Merito University in Wroclaw.
4. Store the piece of work into computer databases managed by the WSB Merito University in Wroclaw.
5. Copy and reproduce the piece of work using photo-mechanic technologies other than those commonly known at the time of the signature hereof (photocopies, Xerox copies etc.),
6. Process the piece of work, transferring it into an electronic form, and distribute it on the Internet without limitations.