FORECASTING ECONOMIC DYNAMICS OF GERMANY USING CONDITIONAL MODELS (1992-2014)

Authors

  • Wiesław Edward Łuczyński Uniwersytet Ekonomiczny w Poznaniu. Wydział Gospodarki Międzynarodowej

DOI:

https://doi.org/10.29015/cerem.206

Keywords:

robust procedures, quantile regression, ARMA, ARMAX, Hodrick - Prescott filter, TRAMO/SEATS

Abstract

A great diversity characterizes economic dynamics of Germany over a long period of time. This refers to many time series: in some periods, they show large volatility which then moves into stability and stagnation phase, generating specific difficulties in a long-term forecasting of economic dynamics. The aim of the research is the attempt to determine the prognostic efficiency of conditional modelling and to answer the question whether or not conditional errors are significantly smaller than the unconditional ones in long-term forecasting.

The research showed that conditional errors (root mean square errors RMSE) of an ex- post forecast did not differ significantly from the unconditional RMSE. The decreasing RMSE of the ex-post forecast for Germany’s  individual economic processes (with the assumption that an intercept occurs in the ARMA procedure) was correlated more strongly with the procedure of filtering economic time series than with the application of the conditional maximum likelihood method (ML) and robust procedures. The relationship between a decreasing  RMSE of the ex-post forecast and the application  of conditional ML methods occurs in ARMAX forecasts (with exogenous processes) for data filtered with  Hodrick - Prescott (HP) filter. It is worth pointing out that a relatively high prognostic efficiency of the robust (resistant) estimation of quantile regression occurs for the economic series linearized with the help of  the TRAMO/SEATS method.

References

Athreya K. B., Lahiri S. N. (2006), Measure Theory and Probability Theory, Springer Science + Business Media LLC, New York.

Berndt E. R., Hall B. H., Hall R. E., Hausman J.A., (1974), Estimation and Inference in Non-Linear Structural Models, „Annals of Economic and Social Measurement‟, vol. 3.

Brandt S., (1999), Analiza danych. Metody statystyczne i obliczeniowe (tłumaczenie L. Szmanowski), wyd. drugie zmienione, Wyd. Naukowe PWN, Warszawa.

Chatfield Ch., (2000), Time-series forecasting, Chapman & Hall/CRC, London.

Clements M. P., Hendry D. F., (2004), Forecasting economic time series, Cambridge University Press, Cambridge.

Clements M. P., Hendry D. F., (2001), Forecasting Non-stationary Economic Time Series, The MIT Press, Cambridge.

Chow G. C., (1995), Ekonometria (przekład W. Jurek), Wyd. Naukowe PWN, Warszawa.

Chukwu E., N., (2003), Optimal Control of the Growth of Wealth of Nations, Taylor & Francis, London and New York.

DeLurgio S., A., (1998) Forecasting Principles and Applications, International Edition, Irwin McGraw - Hill, New York.

Edgeworth F., Y., (1888), On a New Method of Reducing Observations Relating to Several Quantities, „Philosophical Magazine‟, vol. 25.

Ekonometria, (Pod red. M. Gruszczyńskiego i M. Podgórskiej), (2003), SGH, Warszawa.

Green W., H., (2000), Econometric Analysis, Fourth Editon, Prentice Hall International, Inc, New Jersey.

Jajuga K., (1993), Statystyczna analiza wielowymiarowa, PWN, Warszawa.

Kosiorowski D., (2012a), Statystyczne funkcje głębi w odpornej analizie ekonomicznej, Wydawnictwo UE w Krakowie, Kraków.

Kosiorowski D., (2012b), Wstęp do statystyki odpornej. Kurs z wykorzystaniem środowiska R, Wydawnictwo UE w Krakowie, Kraków.

Kufel T., (2007), Ekonometria. Rozwiązywanie problemów z wykorzystaniem programu GRETL, Wyd. Naukowe PWN, Warszawa.

Lem S., (2010), Filozofia przypadku. Literatura w świetle empirii, Dzieła tom XXVI, Biblioteka Gazety Wyborczej, Warszawa.

Lopez - Pintado S., Romo J., (2006), Depth-Based Classification for Functional Data [w:] Series in Discrete Mathematics and Theoretical Computer Science, Liu R. Y., Serfling R., Souvaine D. L. (eds.), vol. 72, AMS.

Lopez - Pintado S., Romo J., (2009), On the Concept of Depth for Functional Data, „Journal of the American Statistical Association‟, vol. 104(486).

Maddala G., S., (2006), Ekonometria (Red. naukowy przekładu M. Gruszczyński), Wyd. Naukowe PWN, Warszawa.

Maronna R. A., Martin R., D., Yohai V., J., (2006), Robust Statistics - Theory and Methods, John Willey & Sons Chichester.

Prognozowanie gospodarcze. Metody i zastosowanie, (2001), (Pod red. M. Cieślak), Wyd. Naukowe PWN, Warszawa.

Statystyczna analiza danych z wykorzystaniem programu R, (2009), (Red. naukowa M. Walesiak, E. Gatnar), Wyd. Naukowe PWN, Warszawa.

Studemundt A. H., (2001), Using Econometrics. A Practical Guide, Fourth Edition, Addison Wesley Longman, Inc., New York.

Downloads

Published

2016-10-15