CENTRAL EUROPEAN REVIEW OF ECONOMICS AND MANAGEMENT

ISSN 2543-9472; eISSN 2544-0365

Vol. 8. No.4. December 2024, 71-92

The impact of China's foreign trade on their Actual-Open Emissions of CO₂ in the years 2000–2020 in the context of EU energy policy

Bartosz FORTUŃSKI Opole University, Poland

Received: 09.04.2024, Revised: 29.10.2024, Accepted: 01.12.2024 doi: http://10.29015/cerem.992

Aim: This article aims to analyze the impact of China's trade with 78 major trading partners on Actual-Open Emission of CO₂ (EAO) from 2000 to 2020 in light of the European Union's (EU) goal to reduce CO₂ emissions by 20% by 2020 compared to 1990 levels.

Research Methods: The research is based on the Actual-Open Emission of CO_2 model and employs the circular flow model to assess the influence of China's foreign trade on CO_2 emissions during the years 2000-2020.

Findings: The study revealed that China's foreign trade significantly influenced its CO₂ emissions in all years analyzed, with positive contributions to EAO due to a trade surplus (exports exceeding imports). As the world's largest exporter and the second-largest importer, China's trade activity resulted in substantial CO₂ emissions. Four key indicators were identified as influencing the difference between Official-Close Emission of CO₂ (EOC) and EAO: China's GDP, the percentage of exported GDP, the percentage of imported GDP, and EOC levels. These findings highlight the significant role of trade in China's CO₂ emissions, which is critical in the context of EU initiatives like "Fit for 55."

Keywords: International trade, China, CO₂ emissions, EU energy policy. *JEL: F18, Q54, Q56*,

1. Introduction

The second biggest economy in the world in the years 2000–2020 was China (worlddata.info). They were in first place in terms of GDP PPP from the year 2014 (Gentle 2016: 87). From 2000 to 2020, China was among the three countries with the world's most prominent export and importers (unctad.org; wits.worldbank.org). China's trade significantly impacted the natural environment, including CO_2 emissions. The considerations contained in this study result from the energy policy implemented by the EU. One of its basic assumptions in 2007–2020 was the rule – 3 times 20%.

EU policy and its energy policy directly refer to sustainable development (SD). Gro Harlem Brundtland proposes the basic definition of SD presented in the report "Our Common Future." SD is defined here as: "meeting the needs of the present without compromising the ability of future generations to meet their own needs." (Czaja, Becla 2002: 308–309; Górka et al. 1995: 78; Rao 2000: 85; Adamczyk 2001: 28–29).

We live in a global world, and therefore, the activities of particular countries have a direct or indirect impact on others. Nevertheless, it does not mean that all countries function in the same way and follow the same rules. Some countries contribute significantly to reducing global CO₂ emissions, bearing high costs compared to others; nonetheless, it does not bring the intended effects of an absolute reduction of CO₂ emissions. This study confirms the issue, especially regarding China's trade with 78 countries. The struggle of the EU with the issue of CO₂ emissions does not affect China with this problem. This study will show that China had, between 2000 and 2020, an impact on world CO₂ emissions lower than officially shown because they export more CO₂ than imported. By this example, it will also be shown that CO₂ emissions are a global problem, and the struggle of several countries does not change much in the universal aspect. Fundamental questions are as follows.

How significant influence did China trade on CO₂ emission globally? What should the EU do to make its energy policy more efficient? Should not all countries be involved in efforts to reduce CO₂ emissions? Should solutions be undertaken to encourage other countries to take a similar approach to the CO₂

issue? Should the European Union change its approach regarding CO_2 reduction and take international exchange into account?

This new approach should help to answer these questions.

China is one of the world leaders in terms of the value of CO₂ emissions and international exchange. According to the Economic Complexity Index (ECI) (The Observatory), it is the world's second-largest importer and exporter and one of the most complex economies.

The primary purpose of this paper is to show the impact of foreign trade on Actual-Open Emissions of CO_2 (E_{AO}) in China after considering trade with the 78 countries. It is not about the value of Official-Close Emission of CO_2 (E_{OC}) emissions but about its accurate volume in regard to the CO_2 transfer both in export and import products. There should also be services that should have been considered in this research.

The survey is based on a circular economic flow model principle that shows money flows through the economy. There are two kinds of this model. Closed – inside the country, and Open – including export and import factors. The same refers to the open and closed economy. The Official-Close Emission of CO₂ is similar to the close circular flow model concept. Is it the right approach to this problem? It seems not to be. We live in a global world where international trade is one of the economy's most important and influential factors. This factor greatly influences CO₂ emission because producing goods and services accompanies CO₂ emission.

2. Methods

From 2007, the EU energy policy was created by rules, mechanisms, and economic and financial instruments (Komunikat UE KOM (2007) 1, Dyrektywa 96/61/WE, Dyrektywa 2001/80/WE, Dyrektywa 2003/87/WE, Dyrektywa 2006/32/WE, Dyrektywa 2009/28/WE, Komunikat UE KOM (2010) 639, Komunikat UE KOM (2008) 781, Komunikat UE KOM (2008) 772, Komunikat UE KOM (2006) 105, Komunikat UE KOM (2008) 13, Komunikat UE KOM (2008) 768). It outlines the basic directions for developing the EU energy sector (Jeżowski 2011). Energy policy came into force in the EU in 2007. The European energy policy aimed to

achieve $3 \times 20\%$ by 2020. It involves the reduction of CO_2 emissions by 20% in 1990, increasing participation of renewable energy sources in the energy mix to 20%, and improving energy use efficiency by 20% compared to 1990.

It should also be emphasized that the indicated aims are interconnected. The last two goals significantly influence the reduction of CO₂ emissions, which in turn impacts the changes in other objectives of the EU energy policy.

The Actual-Open Emission of CO₂ was determined as the CO₂ emissions of a particular country. It is diminished by emissions in exported goods and services of the country and magnified by emissions imported in products and services from the importing country. It means that the emissions balance of CO₂ should decrease Actual-Open Emissions of CO₂. The following formulas present a method used to calculate Actual-Open Emissions of CO₂ for the China:

$$S_B = \left(\frac{I_m}{GDP}\right)\% \times E_{OCC} - \left(\frac{E_X}{GDP}\right)\% \times E_{OC} \tag{1}$$

$$E_{AO} = E_{OC} + S_B \tag{2}$$

S_B – The balance of CO₂ emissions in the selected country;

E_{OC} – The Official-Closed Emissions of CO₂ in China;

E_{OCC} – Official-Closed Emission of CO₂ in selected country;

Ex - Value of the China export to selected country;

Im –Value of the China import from a particular country;

GDP – The gross domestic product of a selected country;

(Im/GDP)% – part of the GDP of a specific country from with the China imported;

(Ex/GDP)% – part of China's GDP which was exported to a particular country;

(Im/GDP)%* E_{OCC} – Quantity of imported CO_2 in goods from a specific country to China;

 $(Ex/GDP)\%*E_{OC}$ – Quantity of exported CO_2 from China to the particular state in exported goods;

 $E_{AO}-Actual\mbox{-}Open$ Emissions of CO_2 in China.

To show the E_{AO} in a specific country, we need the data of all China trade partners. In this survey, we have 78 main trade partners of China divided into five continents: Africa, Asia, Europe, North America, Oceania, and South America (table 1). Africa is represented by four countries, Asia by 29 countries, and Europe by 33 countries. Four countries represent North America, Oceania 2, and South America by seven countries. These countries and China are among the largest CO₂ emitters in the world.

THE IMPACT OF CHINA'S FOREIGN TRADE ON THEIR ACTUAL-OPEN

They were responsible for 96-97% of the world's CO_2 emissions from 2000 to 2020. Due to the multitude of data, the research results in this study will be limited to individual continents, with an indication of the countries that had the most significant impact on CO_2 exchange.

Table 1. Countries participating in the study are divided into individual continents

Continent	Country	Continent	Country	Continent	Country	
Africa	Algeria	Asia	Singapore	Europe	Lithuania	
Africa	Egypt	Asia	Thailand	Europe	Luxembourg	
Africa	Morocco	Asia	Turkmenistan	Europe	Latvia	
Africa	South Africa	Asia	Turkey	Europe	North Macedonia	
Asia	United Arab Emirates	Asia	Uzbekistan	Europe	Netherlands	
Asia	Azerbaijan	Asia	Vietnam	Europe	Norway	
Asia	Bangladesh	Asia	Chinese Taipei	Europe	Poland	
Asia	China	Europe	Austria	Europe	Portugal	
Asia	Cyprus	Europe	Belgium	Europe	Romania	
Asia	Hong Kong	Europe	Bulgaria	Europe	Russia	
Asia	Indonesia	Europe	Belarus	Europe	Slovakia	
Asia	India	Europe	Switzerland	Europe	Slovenia	
Asia	Iran	Europe	Czechia	Europe	Sweden	
Asia	Iraq	Europe	Germany	Europe	Ukraine	
Asia	Israel	Europe	Denmark	North America	Canada	
Asia	Japan	Europe	Spain	North America	Mexico	
Asia	Kazakhstan	Europe	Estonia	North America	Trinidad and Tobago	
Asia	South Korea	Europe	Finland	North America	United States (US)	
Asia	Kuwait	Europe	France	Oceania	Australia	
Asia	Sri Lanka	Europe	United Kingdom	Oceania	New Zealand	
Asia	Malaysia	Europe	Greece	South America	Argentina	
Asia	Oman	Europe	Croatia	South America	Brazil	
Asia	Pakistan	Europe	Hungary	South America	Chile	
Asia	Philippines	Europe	Ireland	South America	Colombia	
Asia	Qatar	Europe	Iceland	South America	Ecuador	
Asia	Saudi Arabia	Europe	Italy	South America	Peru	
				South America	Venezuela	

Source: own elaboration.

3. Trade between China and 78 countries from 2000 to 2020

China is the second biggest economy in the world. Total exports of China in years had a grooving trend until 2008, 2009-2014, 2016-2018, and 2019-2020 (figure 1 and figure 2). The declines in total China exports in a survey time were in the years 2009, 2015–2016, and 2019. China's total exports reached 319,71 billion (B) USD in 2000, up to 2491,05 B USD in 2020. It increased almost eight times in the twenty-one years considered in this survey, and by 21 years considered in this survey, China exported a total of 78 countries, 32,35 trillion USD.

Between 2000 and 2020, China's exports to Asia countries achieved value from 156 B of USD in 2000 to 1168 B of USD in 2020. In the case of North American countries, China's exports were between 81 B of USD in 2000 and 615 B of USD in 2018. In survey time, China's exports to Europe reached 69 B USD in 2000 and 586 B in 2020. In 2007-2010 and 2019-2020, China's exports to European countries exceeded North American countries. Between 2000 and 2020, China's exports to South America achieved a value of 4 B USD in 2000 and 93 B USD in 2013. From 2000 to 2020, China's exports to Oceania have yet to reach 65 B USD; they level 43 B USD to Africa.

1400 1200 1000 800 600

Europe ——North America

Figure 1. China exports to Asia, Europa and North America in the years 2000–2020 in USD billion

Source: own study based on The Observatory of Economic Complexity.

400 200 China's exports to Asia in 2000–2020 constituted between 42.8% (2007) – and 49% (2000) of total China exports, to North America 21.8% (2011) and 27.1% (2002); in the case of Europa, it was 20.5% (2015) and 27.5% (2008). In South America, China exported 1.2% (2002) and 4.4% (2012, 2013) of total their exports. Oceania reached a level of 2.6% and Africa 1.8%. It shows that in international trade, contacts with Asia, North America, and Europe are the most important partners for China.

100
80
60
40
20
0

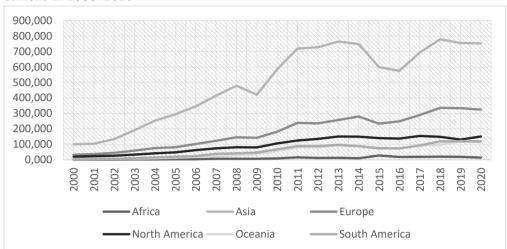

20
20
Africa — Oceania — South America

Figure 2. China exports to Africa, Oceania and South America in years 2000–2020 in USD billion

Source: own study based on The Observatory of Economic Complexity.

China's total imports grew in 2000–2008, 2009–2013, and 2016–2018 (figure 3). In the remaining years, the total China imports declined, according to a survey. China's imports reached 160 B USD (2000) to 1499 B USD (2018). It increased almost ten times over the 21 years of the studied period.

Between 2000 and 2020, China's imports from Asia increased from 99.9 B USD in 2000 to 778 B USD in 2018. In the case of European countries, the value of China's imports was between 32 B of USD in 2000 and 335 B of USD in 2018. In survey time, China's imports from North American countries achieved a value of 19 B of USD in 2000 and 1534 B in 2017. Between 2000 and 2020, China's imports from South America reached 3.6 B USD in 2000 and 119 B USD in 2020. China imports from 2000–2020 from Oceania achieved a value of 4.2 B USD in 2000 and 121 B USD in 2029. China's imports from African countries never reached 28 B USD.

Figure 3. China imports from six continents represented by 78 countries in USD billions in 2000–2020

Source: own study based on The Observatory of Economic Complexity.

China imports from the Asian countries in 2000–2020 constituted 63.8% (2005) – 51% (2019 and 2020) of the total China imports. Imports to China from European countries in the survey period were between 17.6% in 2005 and 22.5% in 2019; in the case of North American countries, it was 13.3% (2001) and 8.1% (2019). From South American countries, it was between 2.2% (2000) and 8.1% (2020) of total China imports. China imports from Australia and New Zealand in 2000–2020 constituted 2.4% (2001) – 8.2 (2019) of the total China imports. Africa never reached a level higher than 2.5%. It shows that China's contacts with Asia, North America, and Europe are the most critical partners in imports, similar to China's exports.

From 2000 to 2020, the value of China's imports from Europe fluctuated, but it was generally upward. This time, China had a positive balance in international trade with all European continents except the Island, Germany, and Switzerland. It means that they imported less from them than they exported to them. It means that China is a vital partner for almost all countries because they are massive international suppliers. It shows that in global trade, China was an essential partner for European countries, especially European Union countries. The EU can influence China's CO₂ emission policy to be more restrictive. It can be easier to establish because the trade

balance between China and Europe, especially with the EU, was positive. This situation is less challenging to achieve because China has more to lose.

4. Official-Closed Emission of CO₂ of China and the 78 countries

Reducing CO_2 emissions is one of the priorities of the EU energy policy. However, the reduction of CO_2 emissions assumption concerns only the EU, and except for the encouragement, there is no other possibility to convince other countries worldwide to undertake similar actions. Countries participating in this survey were responsible for around 97% of all CO_2 emissions.

Table 2. China Official-Closed Emissions of CO₂ in MT in 1990, 2000–2020

14010 21 China China Chose 21 2000 20 20 20 20 20 20 20 20 20 20 20 2										
Year	1990	2000	2001	2002	2003	2004	2005	2006		
MT of CO2	2323.	3360.	3523.	3843.	4532.	5334.	6098.	6677.		
	83	87	08	40	15	89	18	29		
China % of World	10.78	14.09	14.57	15.54	17.46	19.54	21.47	22.80		
Emission										
Year		2007	2008	2009	2010	2011	2012	2013		
MT of CO2		7239.	7378.	7713.	8145.	8827.	9004.	9247.		
		76	25	90	83	19	24	43		
China % of World		23.87	24.11	25.74	26.03	27.44	27.70	27.96		
Emission										
Year		2014	2015	2016	2017	2018	2019	2020		
MT of CO2		9293.	9279.	9278.	9466.	9652.	9810.	9899.		
		19	73	98	36	69	46	33		
China % of World		28.04	27.95	27.81	28.07	28.10	28.55	30.63		
Emission										

Source: own study based on BP report.

Official-Close Emission of CO_2 is a value of CO_2 emitted by a country's economy. Table 2 and figure 4 presents China, 78 countries, and the whole world's emission of CO_2 . From 2004, China was the world's biggest emitter of CO_2 , and from 2000–2020, it was responsible for 14.09% (2000) to 30.63% (2020) of the world's emissions. In the survey, China emitted 157.61 BT of CO_2 and recorded 3360.87 – 9899.33 MT of CO_2 . In the entire study, China emitted more CO_2 than in 1990.

In the year 1990, the following CO₂ emission values occurred in MT: African countries emitted 510.35, Asian countries – 6175.08, Europa – 7521.44, North

America – 5173.59, Oceania – 300.78 and South America – 535.42. At this time, European countries were the biggest CO₂ emitters in the world. In the years 2000–2020, African countries emitted a total of 16.41 BT of CO₂ and were responsible for around 2.5% of the world's emission of CO₂. In the same period, Asia emitted 316.67 BT of CO₂, equivalent to 36% (2000) and 58.9% (2020) of the world's emission of CO₂. Europa emitted 121.15 BT of CO₂ in survey time and was responsible for 25.2% (2000) – 14.37% of world emission of CO₂. From 2000–2020 North America emitted 134.98 BT of CO₂ and was responsible for 27.93% (2000) – 16.61% (2020) of world emissions. Oceania emitted 8.95 BT, and South America emitted 19.89 BT of CO₂ simultaneously.

The biggest emitter of CO_2 (2000–2020) in North America was the US, and in Asia was China. In the survey, China emitted 157.10 BT of CO_2 and had taken values in the range 9899.33 (2020) – 3360.87 (2000) MT of CO_2 . In 2020, China was responsible for 30.6% of the world's CO_2 emissions.

25000,00
20000,00
15000,00
10000,00
5000,00
0,00

— Africa — Asia — Europe
— North America — Oceania — South America

Figure 4. The Official-Closed Emissions of CO₂ on six continents in MT in 2000–2020

Source: own study based on BP report.

If we consider the Official-Closed Emission of CO₂, China did not fulfill in any survey years one of the three main aims of the EU energy policy – reduction of CO₂ emission to the level of 80% emission since the year 1990 (table 3). At this point it is impossible to present if continents fulfill the EU obligation because it must be

calculated for each country separately. Moreover, there was a noticeable upward trend in China's Official-Closed Emission of CO₂ throughout the entire period under study. Except for 2015 and 2016, in the whole period under study, the volume of this emission was higher than that recorded in the year 1990.

Table 3. China % of E_{OC} about 1990 in the years 2000–2020

Year	2000	2001	2002	2003	2004	2005	2006
% of Eoc	144.63	151.61	165.39	195.03	229.57	262.42	287.34
Year	2007	2008	2009	2010	2011	2012	2013
% of Eoc	311.54	317.50	331.95	350.53	379.85	387.47	397.94
Year	2014	2015	2016	2017	2018	2019	2020
% of Eoc	399.91	399.33	399.30	407.36	415.38	422.17	425.99

Source: own study based on BP report.

5. Actual-Open Emission of CO_2 – after considering the China trade with the 78 countries

Using the formula (1), the S_B of CO₂ emission was calculated for China and 78 countries from five continents. It shows us the balance of CO₂ emissions. If the value is positive, it means that China's import of CO₂ from a particular country was higher than its export to this country. If the value was negative, then the opposite situation took place – the export of CO₂ was higher than the import. We add the definite number to a particular country's emission amount, and if it is negative, we diminish it. Due to the large number of countries included in the study, individual countries were assigned to appropriate continents. The values given for individual continents are the sum of the CO₂ balance results for the particular countries participating in the study and located on the relevant continent (table 1). Therefore, these data are presented about individual continents. The results of the calculation are presented in the tables 4 and 5.

Table 4. China's balance of CO_2 emissions (S_B) and Actual-Open Emissions of CO_2 (E_{AO}) in 2000–2009 in MT

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Africa	-5.11	-4.54	-5.44	-9.20	15.31	20.32	27.51	29.78	27.31	24.11
Asia	- 357.	342.	398.	508.0	- 666.8	- 819.3	912.7	910.9	774.3	596.9
	62	52 52	06	6	5	5	1	510.5	774.5	1
Europe	- 144. 75	- 140. 82	- 182. 22	- 285.8 9	- 403.7 5	- 536.2 2	612.4	- 697.4 6	- 626.0 2	- 446.0 0
North America	- 214. 61	- 214. 94	- 273. 97	- 358.4 9	- 467.1 7	- 583.4 2	- 643.7 6	- 622.2 8	518.8 7	415.3 4
Oceania	12.6 1	- 11.4 4	- 15.5 1	23.10	34.62	41.18	43.35	46.22	40.91	29.94
South America	10.2 6	- 10.3 4	-7.83	10.95	21.03	28.41	- 42.85	- 52.55	64.35	42.33
Total	- 744. 96	- 724. 60	- 883. 03	- 1195. 69	- 1608. 74	- 2028. 90	- 2282. 61	- 2359. 24	- 2051. 81	- 1554. 64
E _{AO}	2615 .91	2798 .48	2960 .37	3336. 46	3726. 16	4069. 29	4394. 68	4880. 53	5326. 44	6159. 26

Source: own study based on BP report, CO_2 EMISSIONS FROM FUEL COMBUSTION Highlights and The Observatory of Economic Complexity.

In the considered period, the total China trade balance of CO₂ emission with the 78 countries taken together was negative, meaning that China imported less CO₂ than exported. China's lowest value in 2007 was -2359.24 MT of CO₂, and the highest was in 2001 -724.60 MT of CO₂. However, if we consider each continent separately, only in the case of African countries, we notice a positive balance of CO₂. It was +1.57 MT of CO₂ (2015). From 2000 to 2020, China had a negative balance with Africa; by those years, it was -318.08 MT. In the case of the rest of the continents, China exported more CO₂ than imported every year considered period. This means that their CO₂ balance was negative throughout the entire research period. Asia was the continent with China having the lowest negative balance of CO₂. Its value ranged from -342.52MT of CO₂ (2001) to -912.71 MT of CO₂ (2006), and by the considered period,

it was -11904.86 MT of CO_2 . The next continent with which China had a negative balance of CO_2 was North America. The CO_2 balance ranged from -643.76 MT (2006) to -214.61 MT (2000), and in the years 2000–2020, the total value was -8702.02 MT of CO_2 .

The next continent with which China had a negative balance of CO₂ was Europa, and the value was between -140.82 MT in 2001 and -697.46 MT in the year 2007. The total balance in the survey time was -7955.21 MT of CO₂. In the case of South America, China had a negative balance of CO₂; its value was between -7.83 MT in 2002 and -71.18 MT in 2011. In all survey years, it was -798.84 MT of CO₂. A similar situation was with Oceania. The CO₂ balance with China was at a value of -11.44 MT in 2001 and -46.22 in 2007. The total value in 2000–2020 was -523.17 MT of CO₂.

Table 5. China's balance of CO_2 emissions (S_B) and Actual-Open Emissions of CO_2 (E_{AO}) in 2010–2020 in MT

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Africa	-	-	-	-	_	1.57	-4.18	-5.75	-8.46	-6.91	-9.07
	25.7	19.8	25.0	22.5	23.5						
	5	3	2	0	5						
Asia	-	-	-	-	-	-	-	-	-	-	1
	640.	629.	614.	561.	558.	533.	496.	445.	379.	371.	386.
	22	20	15	80	87	60	84	57	02	54	65
Europ	-	-	-	-	-	-	-	-	-	-	-
е	519.	497.	414.	372.	359.	298.	284.	285.	269.	280.	298.
	74	89	36	09	65	11	64	71	37	02	07
North	-	-	-	-	-	-	-	-	-	-	-
Ameri	475.	447.	445.	414.	403.	393.	363.	385.	386.	339.	333.
ca	05	66	49	88	81	67	59	51	71	12	68
Ocean	-	-	ī	-	-	-	-	-	-	-7.57	-
ia	31.3	31.3	31.1	23.3	21.1	19.6	16.4	14.0	14.9		13.3
	6	2	7	0	9	9	5	4	1		1
South	-	-	-	-	-	-	-	-	-	-	-
Ameri	61.9	71.1	70.5	63.6	58.9	47.5	34.4	32.3	23.6	22.7	20.7
ca	7	8	9	8	5	9	9	5	5	8	1
Total	-	-	-	-	-	-	-	-	-	-	-
	1754	1697	1600	1458	1426	1291	1200	1168	1082	1027	1061
	.09	.08	.78	.23	.02	.08	.20	.92	.12	.94	.49
E _{AO}	6391	7130	7403	7789	7867	7988	8078	8297	8570	8782	8837
	.74	.11	.47	.19	.17	.65	.78	.44	.57	.51	.85

Source: own study based on BP report, CO_2 EMISSIONS FROM FUEL COMBUSTION Highlights and The Observatory of Economic Complexity.

China had the lowest negative S_B of CO₂ emission for 21 years of the survey, with the US (-7367.21 MT), Hong Kong (-5055 MT), Japan (-2938.62 MT), Germany (-1489.23 MT), United Kingdom (-1153.05 MT) and Netherlands (-1016.23 MT). The only countries with which China had a positive value of S_B of CO₂ by the survey years were Uzbekistan (10 MT), Turkmenistan (112 MT), Saudi Arabia (118 MT), Qatar (15 MT), Oman (158 MT), Kuwait (25 MT), Kazakhstan (50 MT), Iraq (45 MT) and Iran (122 MT). In the case of South America: Brazil (-342.35 MT), Oceania: Australia (-433.56 MT) and Africa: Egypt (-140.48 MT).

China had negative S_B of CO_2 emission in all 21 years, as considered in this survey with all EU countries (-7561.69 MT). This means the EU had an E_{AO} higher than the E_{OC} because China exported much more CO_2 to EU countries than it did to China. This situation influenced meeting the requirements of the EU energy policy -20% less CO_2 emissions compared to 1990. The same is true in the case of E_{OC} .

Table 6. China % of E_{AO} and E_{OC} about 1990 in 2000–2020

Yea	1990	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
r											
E _{OC}	100	144.6	151.6	165.3	195.0	229.5	262.4	287.3	311.5	317.5	331.9
		3	1	9	3	7	2	4	4	0	5
E _{AO}		112.5	120.4	127.3	143.5	160.3	175.1	189.1	210.0	229.2	265.0
		7	2	9	8	5	1	1	2	1	5
Yea	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
r											
E _{OC}	350.5	379.8	387.4	397.9	399.9	399.3	399.3	407.3	415.3	422.1	425.9
	3	5	7	4	1	3	0	6	8	7	9
E _{AO}	275.0	306.8	318.5	335.1	338.5	343.7	347.6	357.0	368.8	377.9	380.3
	5	3	9	9	4	7	5	6	1	3	1

Source: own study based on BP report, CO₂ EMISSIONS FROM FUEL COMBUSTION Highlights and The Observatory of Economic Complexity.

The E_{AO} was calculated by using formula (2). In the case of China, the changes in the percentage of E_{AO} CO₂ emission in 1990 were significant (table 6). In all survey years, China had higher E_{AO} than the emission in 1990. China's E_{OC} in 2000–2020 was never lower than its value in 1990. The lowest increase of E_{AO} relative to E_{OC} was in 2000 (44.63%), and the highest was 325.99% (2020). China did not fulfil the EU energy policy (reduction of CO_2 emission) in any of the survey years. The E_{AO} in

China in each survey year was lower than the their Official-Close Emission of CO_2 . The smallest spread between the two of them was in the year 2000, and it was 32.06% of China's emission of CO_2 from the year 1990. The highest spread between E_{OC} and E_{AO} in China was in 2007, 101.52%. The highest E_{AO} in China was in 2020, which was 380.31% of CO_2 from 1990. This data shows that China was a substantial net exporter of CO_2 emissions in all survey years.

6. Discussion

It is worth stressing that the EU's actions in implementing the EU energy policy are limited only to the EU area. Between 2000 and 2020, China, in all survey years, had a positive trade balance with African, Asian, European, EU, and North American countries. With Oceanian countries, China had a positive trade balance from 2000 to 2008, and South American countries had a positive trade balance from 2000 to 2001. Throughout the review, the total China foreign trade balance considering five continents was negative in Oceania – 2009–2020 and South America – 2002–2020. The total China balance by 21 years of the survey was 13533 B USD. By those 21 years, the total positive China trade balance was Asia (4478 B of USD), Europe (3716 B of USD), North America (5560 B of USD), and Africa (294 B of USD). The only continents with which China had a negative trade balance from 2000 to 2020 were Oceania, which was -390 B of USD, and South America's -126 B of USD. China's trade balance had a tremendous impact on E_{AO} in all of the 78 countries that participated in the research.

What does influence on value of E_{AO} ? It is Official-Close Emission of CO_2 of a particular country, the % of GDP exported goods from the China. It must be considered also the % of GDP of countries from which the China imported goods. This directly results in China's enormous influence on CO_2 emissions in other countries.

EU is the world leader in CO₂ reduction. One of its tolls is the EU energy policy. What can/should the EU do to make other countries do more to reduce CO₂ emissions? What are the challenges that the EU faces? There are two possibilities. One is doing nothing, living it without changes. The EU will be content with its energy policy, with

a reduction of CO₂ emissions inside the EU. However, it will change nothing. The EU will still import CO₂ from outside the EU through products and services and continue contributing to CO₂ emissions outside the EU. The second option is to change its approach to the energy policy to be more global. The EU should take into account the CO₂ emissions that are imported into the EU. The EU should consider some instruments that encourage countries outside the EU to do similar activities to reduce CO₂ emissions. For example, ecological taxes (Fortuński 2012–2023; Bogrocz 2008; Graczyk, Jakubczyk 2005; Kaczmarski 2010; Kryk 2012a, 2012b). The E_{AO} also indicates the ineffectiveness of international agreements in reducing emissions of CO₂, such as the Kyoto Agreement.

The main challenges in the case of the second solution are retaliation activity undertaken by the countries from which the EU imports and on each of these "ecological taxes" or other instruments would be imposed. This will, among others, include transaction costs. The other challenge will be how to promote the reduction of CO₂ emissions in countries outside the EU. Because China, as we saw in previous data, imports from European countries are much smaller than China's exports to those countries, it will be easier for the EU to decrease China's CO₂ emissions. This is because China is more interested in not losing the EU as a destination for export – it would be more costly for China than for the EU to establish a new form of CO₂ tax.

The appropriate would be tariffs on all kinds of products and services imported from China to the EU. Such a tariff from the EU would likely trigger a counteraction from China in the form of tariffs on products from the EU.

Another problem is determining the reference period to which the volume of CO₂ emissions in China should be referred. Setting this to 1990 seems unrealistic. In this context, it should be noted that China's official CO₂ emissions increased throughout the period under review. The same applies to the reduction in CO₂ emissions. In the fit for 55 documents, there is talk of a 55% reduction in CO₂ emissions by 2030 (compared to 1990) and achieving climate neutrality by 2050.

About China, there is no mention of any reduction in emissions, whether compared to 1990, 2000, or even 2010. it also seems that not addressing the issue of the export and import of CO₂ emissions and its limitation by the EU on non-EU countries is deceiving EU citizens. The EU spends vast amounts of money on climate

transformation. People bear the costs associated with this daily in the form of higher electricity bills and loss of jobs in emission sectors. Other countries outside the EU do not bear such expenses, which is unfair.

Another problem is that the EU is responsible for a small percentage of global CO₂ emissions – about 8%. This means that if the EU does not engage other countries in similar actions, particularly the largest CO₂ emitters, which are also its largest trading partners, climate protection actions will not bring benefits at the global level.

7 Summary

The European Union is regarded as the leader in the fight against global warming, a battle for clean energy, and a reduction of CO₂ emissions. Unfortunately, its actions are isolated, which leads to the situation that even such a large economy as the EU, which is strongly economically related to other countries through trade, can only change a little within this issue. The EU and China are leaders in world trade. The EU could use its position in international trade to achieve its own energy policy goals – reducing CO₂ emissions.

Trade relates to a balance of CO_2 hidden in goods imported to and exported from China. It affects the E_{AO} in all 78 countries from this survey. The impact of China's international trade was very high, and for most of the years, continents negatively impacted other countries. This means that China mainly exported CO_2 to those countries. It was also the case for UE countries. The impact of the trade on CO_2 emission was huge because of the substantial international trade in goods and services between China and the EU.

The effectiveness of its members implementing the EU energy policy is limited only to the EU's territory. It can result in the EU energy policy not being regarded as a SD policy and being related to high costs. If the EU is interested in reducing CO₂ emissions, it must consider it. Because of those high costs, EU countries try to reduce them by importing parts, components, and products from cheaper countries, which very often have higher emissions of CO₂. It is usually because, in those countries, environmental law is more relaxed than in the EU.

This situation brings some challenges ahead of the EU, especially in their energy policy in the CO₂ aspect. The survey has shown that the EU should consider changes in its energy policy. This policy should take into account an element of CO₂ emission more globally. The results of the research indicate that CO₂ emission is a global problem. It requires the EU to consider introducing a new instrument that would incentivize countries outside the EU to take effective action to reduce CO₂ emissions. A new instrument, an eco-energy tax, could be introduced for that purpose. The EU would apply it to all trade partners, individual countries, or groups of countries. Additionally, this tax would concern the volume of particular countries exporting to the EU (Bielecki et al. 2016: 43–46). Fortunately, EU will have some new carbon tax shortly (Salzman 2023; Carbon Border Adjustment Mechanism). Unfortunately, this kind of action could bring contractions.

Bibliography

Adamczyk J. (2001), Koncepcja zrównoważonego rozwoju w zarządzaniu przedsiębiorstwem (The Concept of Sustainable Development in Business Management), Wydawnictwo Akademii Ekonomicznej, Kraków.

Bielecki S., Zalewski P., Fortuński B. (2016), Wybrane problemy zarządzania energetyką (Selected Energy Management Problems), Wydawnictwo Texter, Warszawa.

Bogrocz-Koczwara M., Herlender K. (2008), Bezpieczeństwo energetyczne a rozwój odnawialnych energii (Energy Security and the Development of Renewable Energies), "Energetyka", no. 3.

Czaja S., Becla A. (2002), Ekologiczne podstawy procesów gospodarowania (Ecological Foundations of Management Processes), Wydawnictwo Akademii Ekonomicznej, Wrocław.

Carbon Border Adjustment Mechanism, https://taxation-customs.ec.europa.eu/carbon-border-adjustment-mechanism_en [01.11.2023].

Dyrektywa 96/61/WE, z dnia 24 września 1996 r. dotycząca zintegrowanego zapobiegania zanieczyszczeniom i ich kontroli (Directive 96/61/WE Concerning Integrated Pollution Prevention and Control), Dz.U. L 257 z 10.10.1996.

Dyrektywa 2001/80/WE, PARLAMENTU EUROPEJSKIEGO I RADY z dnia 23 października 2001 r. w sprawie ograniczenia emisji niektórych zanieczyszczeń do powietrza z dużych obiektów energetycznego spalania, (Directive 2001/80/WE on the Limitation of Emissions of Certain Pollutants into the Air from Large Combustion Plants), Dz.U. L 309 z 27.11.2001.

Dyrektywa 2003/87/WE, PARLAMENTU EUROPEJSKIEGO I RADY z dnia 13 października 2003 r. ustanawiająca system handlu przydziałami emisji gazów cieplarnianych we Wspólnocie oraz

THE IMPACT OF CHINA'S FOREIGN TRADE ON THEIR ACTUAL-OPEN

zmieniająca dyrektywę Rady 96/61/WE (Directive 2003/87/WE Establishing a Scheme for Greenhouse Gas Emission Allowance Trading within the Community and Amending Council Directive 96/61/EC), Dz.U. L 275 z 25.10.2003.

Dyrektywa 2006/32/WE, PARLAMENTU EUROPEJSKIEGO I RADY z dnia 5 kwietnia 2006 r. w sprawie efektywności końcowego wykorzystania energii i usług energetycznych oraz uchylająca dyrektywę Rady 93/76/EWG (Directive 2006/32/WE on Energy End-use Efficiency and Energy Services and Repealing Council Directive 93/76/EEC).

Dyrektywa 2009/28/WE, Parlamentu Europejskiego i Rady z dnia 23 kwietnia 2009 r. w sprawie promowania stosowania energii ze źródeł odnawialnych zmieniająca i w następstwie uchylająca dyrektywy 2001/77/WE oraz 2003/30/WE (Directive 2009/28/WE on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC).

Fortuński B. (2012a), "Wyniki" proekologicznego podejścia do energetyki w Unii Europejskiej w oparciu o model EFQM ("Results" of the Pro-ecological Approach to Energy in the European Union Based on the EFQM Model), in: Orientacja na wyniki we współczesnej gospodarce, Borys T., Rogala P. (eds.), Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, vol. 265, Wrocław.

Fortuński B. (2012b), Proekologiczne podejście do energetyki i jej wpływ na handel zagraniczny Unii Europejskiej (An Ecological Approach to Energy and its Impact on the European Union's Foreign Trade), in: Handel i inwestycje w semiglobalnym otoczeniu, Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, vol. 1 no. 267, Wrocław.

Fortuński B. (2013a), Wyzwania i problemy zrównoważonego rozwoju w energetyce światowej w kontekście polityki energetycznej UE (Challenges and Problems of Sustainable Development in the Global Energy Sector in the Context of the EU Energy Policy), in: Handel wewnętrzny, Kryk B. (ed.), IBRKK, Warszawa.

Fortuński B. (2013b), Wykorzystanie wybranych surowców energetycznych w kontekście polityki energetycznej Unii Europejskie (The Use of Selected Energy Resources in the Context of the European Union's Energy Policy), in: Efektywne gospodarowanie zasobami przyrodniczymi i energią, Graczyk A. (ed.), Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, vol. 317, Wrocław.

Fortuński B. (2016a), Polityka energetyczna Unii Europejskiej – 3x20. Diagnoza i perspektywy w kontekście zrównoważonego rozwoju, (Energy Policy of the European Union – 3x20. Diagnosis and Perspectives in the Context of Sustainable Development), in: Ekonomia środowiska i polityka ekologiczna, Becla A., Kociszewski K. (eds.), Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, vol. 453, Wrocław.

Fortuński B. (2016b), Wpływ handlu zagranicznego Unii Europejskiej na rzeczywistą emisję CO₂, (The Impact of the European Union's Foreign Trade on Actual CO₂ Emissions), in: Ekonomia XXI wieku, Michalczyk W. (ed.), Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu, Wrocław.

Fortuński B. (2016c), Globalna sprawiedliwość a polityka energetyczna Unii Europejskiej (Global Justice and the European Union's Energy Policy), in: Globalna sprawiedliwość, Janikowska O., Słodczyk J. (eds.), Wydawnictwo Uniwersytetu Opolskiego, Opole.

Fortuński B. (2017a), The Impact of the Poland Foreign Trade on its Real CO₂ Emissions, "Economic and Environmental Studies", vol. 17, no. 4.

Fortuński B. (2017b), Wpływ handlu zagranicznego Republiki Federalnej Niemiec na jej rzeczywistą emisję CO₂ (The Impact of the Federal Republic of Germany's Foreign Trade on its Actual CO₂ Emissions, "Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu", no. 491, Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu, Wrocław.

Fortuński B. (2018), The Impact of the China Foreign Trade on its Actual CO₂ Emissions, "International and Multidisciplinary Journal of Global Justice", no. 1.

Fortuński B. (2019a), The Impact of Foreign Trade on the Netherlands' Real CO₂ Emissions, "Central European Review of Economics and Management", vol. 3, no. 4.

Fortuński B. (2019b), The Impact of the Spanish Foreign Trade on its Real CO₂ Emissions, in: Education Excellence and Innovation Management through Vision 2020, Khalid S., (red.), International Business Information Management Association, Norristown, Pa.

Fortuński B. (2020a), Challenges Faced by the EU's Energy Policy on CO₂ Emissions From 1997–2017, Including Bilateral Trade between the EU and the US, "Zeszyty Naukowe Politechniki Śląskiej. Organizacja i Zarządzanie", no. 147.

Fortuński B. (2020b), Sustainable Development and Energy Policy. Actual CO₂ Emissions in the European Union in the Years 1997–2017, Considering Trade with China and the USA, "Sustainability", vol. 12, no. 8.

Fortuński B. (2022), Wpływ handlu UE i Chin na emisję CO₂ w latach 1997–2017 (Impact of EU-China trade on CO₂ emissions 1997–2017), "Kwartalnik Krakowskiego Towarzystwa Technicznego", no. 189.

Fortuński B. (2023), Wpływ polskiego i czeskiego handlu zagranicznego na rzeczywistą otwarta emisję CO₂ w latach 2000–2020 w kontekście polityki energetycznej UE (The Impact of Polish and Czech Foreign Trade on Actual Open CO₂ Emissions in the Years 2000–2020 in the Context of EU Energy Policy), in: Ekonomiczne, zarządcze i społeczno-kulturowe wymiary relacji polsko-czeskich, Drelich-Skulska B., Sobocińska M., Tomaskowa A. (eds.), Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu, Wrocław.

Gentle P.F. (2016), An Introduction to the Prospect of the Chinese RMB as a Reserve Currency, "Banks and Bank Systems", vol. 11 no. 1.

Górka K., Poskrobko B., Radecki W. (1995), Ochrona środowiska. Problemy społeczne, ekonomiczne i prawne (Environmental Protection. Social, Economic and Legal Problems), Polskie Wydawnictwo Ekonomiczne, Warszawa.

Graczyk A., Jakubczyk Z. (2005), Rozwój rynku energii elektrycznej w Polsce w kontekście integracji z Unią Europejską (Development of the Electricity Market in Poland in the Montext of Integration with the European Union), "Prace Naukowe Akademii Ekonomicznej we Wrocławiu", vol. 156, Wydawnictwo Akademii Ekonomicznej we Wrocławiu, Wrocław.

IEA (2020), CO₂ EMISSIONS FROM FUEL COMBUSTION Highlights (2020 Edition), IEA.

Jeżowski P., Koszty polityki klimatycznej UE dla polskich przedsiębiorstw energetycznych (Costs of EU Climate Policy for Polish Energy Companies), http://www.sgh.waw.pl/instytuty/imsg/ccc2011/jezowski_paper.pdf [16.03.2012].

THE IMPACT OF CHINA'S FOREIGN TRADE ON THEIR ACTUAL-OPEN

Kaczmarski M. (2010), Bezpieczeństwo energetyczne Unii Europejskiej (Energy Security of the European Union), Wydawnictwa Akademickie i Profesjonalne, Warszawa.

Komunikat UE KOM(2010) 639, DO PARLAMENTU EUROPEJSKIEGO, RADY, EUROPEJSKIEGO KOMITETU EKONOMICZNO-SPOŁECZNEGO I KOMITETU REGIONÓW Energia 2020 Strategia na rzecz konkurencyjnego, zrównoważonego i bezpiecznego sektora energetycznego (Energy 2020 A Strategy for Competitive, Sustainable and Secure Energy).

Komunikat UE KOM(2008) 781, DO PARLAMENTU EUROPEJSKIEGO, RADY, EUROPEJSKIEGO KOMITETU EKONOMICZNO-SPOŁECZNEGO I KOMITETU REGIONÓW – Drugi strategiczny przegląd sytuacji energetycznej – plan działania dotyczący bezpieczeństwa energetycznego i solidarności energetycznej. (Second Strategic Energy Review. An EU Energy Security and Solidarity Action Plan).

Komunikat UE KOM(2006) 105, DO PARLAMENTU EUROPEJSKIEGO, RADY, EUROPEJSKIEGO KOMITETU EKONOMICZNO-SPOŁECZNEGO I KOMITETU REGIONÓW – Zielona Księga. Europejska strategia na rzecz zrównoważonej, konkurencyjnej i bezpiecznej energii. (Green Paper – A European Strategy for Sustainable, Competitive and Secure Energy).

Komunikat UE KOM(2008) 13, DO PARLAMENTU EUROPEJSKIEGO, RADY, EUROPEJSKIEGO KOMITETU EKONOMICZNO-SPOŁECZNEGO I KOMITETU REGIONÓW – wspieranie podejmowania na wczesnym etapie działań demonstracyjnych w dziedzinie zrównoważonej produkcji energii z paliw kopalnych (Supporting Early Demonstration of Sustainable Power Generation from Fossil Fuels).

Komunikat UE KOM(2008) 768, DO PARLAMENTU EUROPEJSKIEGO, RADY, EUROPEJSKIEGO KOMITETU EKONOMICZNO-SPOŁECZNEGO I KOMITETU REGIONÓW – morska energia wiatrowa: działania niezbędne do działalności celów polityki energetycznej w perspektywie 2020 roku i dalszej (Offshore Wind Energy. Actions Necessary to Meet Energy Policy Objectives in 2020 and beyond).

Komunikat UE KOM(2008) 772, DO PARLAMENTU EUROPEJSKIEGO, RADY, EUROPEJSKIEGO KOMITETU EKONOMICZNO-SPOŁECZNEGO I KOMITETU REGIONÓW – Efektywność energetyczna: realizacja celu 20 procent (Energy Efficiency: Delivering the 20% Target).

Komunikat UE KOM(2007) 1, I DO RADY EUROPEJSKIEJ I PARLAMENTU EUROPEJSKIEGO Europejska polityka energetyczna (European Energy Policy).

Kryk B. (2012a), Kontrowersje polskiej polityki energetycznej w kontekście realizacji wymogów unijnych, (Controversies of Polish Energy Policy in the Context of Implementing EU Requirements), "Ekonomia i Prawo", vol. XI "Integracja i dezintegracja w sektorze realnym", Wydawnictwo Uniwersytetu Mikołaja Kopernika, Toruń.

Kryk B. (2012b), Wzrost efektywności energetycznej – wyzwanie inwestycyjne dla polskiego sektora energetycznego, (Increasing Energy Efficiency – an Investment Challenge for the Polish Energy Sector), in: Kapitał ludzki i społeczny w rozwoju regionalnym, t. I, Dymek Ł., Bedrunka K. (eds.), Politechnika Opolska, Opole.

Bartosz FORTUŃSKI

The Observatory of Economic Complexity by Alexander Simoes, http://atlas.media.mit.edu/en/profile/country/deu/#Exports [25.02.2020].

Polityka energetyczna Unii Europejskiej, wg stanu na 08.12.2014. (Energy policy of the European Union, as of 08.12.2014.), oide.sejm.gov.pl/oide/images/files/pigulki/polityka_energetyczna.pdf [3.06.2016].

Rao P.K. (2000), Sustainable Development. Economics and Policy, Blackwell, London.

Salzman A. (2023), European Carbon Tax Is Coming. What It Means for the World, https://www.barrons.com/articles/europe-carbon-tax-emissions-climate-policy-1653e360 [01.11.2023].

The World Bank Data Catalog, http://data.worldbank.org/data-catalog/world-development-indicators [25.02.2020].

The World Bank Data Catalog, https://data.worldbank.org/indicator/NE.EXP.GNFS.CD?locations=US-CN-RU-IN-EU [25.02.2020].

https://www.worlddata.info/largest-economies.php [01.11.2023].

https://www.weforum.org/agenda/2016/06/when-did-america-become-the-world-leader-in-living-standards [25.02.2020].

https://unctad.org/topic/trade-analysis/chart-10-may-2021 [01.11.2023].

 $https://wits.worldbank.org/CountryProfile/en/Country/WLD/Year/2000/TradeFlow/Import~\cite{Country}. The country of the count$