
WSB University in Wroclaw 
Research Journal
ISSN 1643-7772 I eISSN 2392-1153
Vol. 16 I No. 3

Zeszyty Naukowe Wyższej Szkoły 
Bankowej we Wrocławiu
ISSN 1643-7772 I eISSN 2392-1153
R. 16 I Nr 3

Dorota Pekasiewicz
University of Lodz
pekasiewicz@uni.lodz.pl

Bootstrap Estimation Methods  
of Value at Risk

Author: Dorota Pekasiewicz

Keywords: bootstrap estimation, ac-
curacy of estimation, Value at Risk
JEL: C13, C14, C15

History: Otrzymano 2015-11-21, po-
prawiono 2016-06-11, zaakceptowano 
2016-07-05

Abstract

Interval bootstrap methods can be used to estimate Value at Risk, defined 
as a quantile of fixed order of random variable being the value of losses from 
investments. These methods are applied when there is no information about 
the distribution class of the variable considered, which is the advantage of 
bootstrap methods compared with parametric methods. Semiparametric es-
timation procedures are of particular importance. They can be used in the 
estimation of high-order quantiles. They guarantee the occurrence of large 
values in the generated bootstrap samples. The paper presents nonpara-
metric and semiparametric bootstrap estimation methods and the results 
of simulation studies for higher-order quantiles of a heavy-tailed distribu-
tion. The application of the methods analysed provide confidence intervals 
with greater accuracy compared to the nonparametric classical method. The 
procedures under discussion are used in VaR estimation of daily returns of 
selected shares at Warsaw Stock Exchange.

Introduction

In investment activity we are faced 
with a variety of risks, including mar-
ket risk (currency rate, interest rate, 
stock prices, prices of goods), as well 
as credit, operational, liquidity, legal 
or event risk. Recent years have seen 
a very rapid development of meth-
ods involved in measuring those risks. 
Viewing risk as a random variable 
with a continuous distribution, we can 

divide risk measurements into differ-
entiated groups (K. Jajuga, 2007, pp. 
39-48). One of them are quantiles of 
distribution, amongst which there is 
VaR – Value at Risk, a very popular 
risk measurement in recent years. 
In classical approach, in order to es-
timate market risk using the VaR, it 
is necessary to know the price dis-
tribution or the rate of return of the 
instruments investigated. The present 
assumptions on the normality of the 
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distribution of variables considered 
frequently fail to be correct. In many 
cases we come across heavy-tailed 
distributions, which results in greater 
probabilities that substantial losses 
will occur compared to the situations 
where variables are characterized by 
normal distributions. This leads to sig-
nificant estimation errors. Lack of in-
formation on the distribution class of 
the price of instruments or their rate 
of return, and the application of the 
quantile of the empirical distribution 
for point estimation of value at risk is 
also affected by a large error. However, 
the solution to this problem may lie in 
providing interval evaluation instead 
of point evaluation and in applying the 
non-classical methods. 
The paper demonstrates the appli-
cation proposals regarding bootstrap 
interval estimation procedures for es-
timating value at risk, defined on the 
basis of the concept of the appropri-
ate quantile-order when the distri-
bution of the variable under study is 
unknown. Bootstrap confidence inter-
vals for quantile Qp of order p of the 
variable X distribution represent an al-
ternative for the “exact” nonparamet-
ric confidence interval form (Zieliński, 
2008):

 (1)

where X (r )
(n) ,X (s)

(n)  are order statistics 
with ranks, r and s, respectively, de-
termined based on a random variable 
X1, X2, ..., Xn, whereas 1 – α is a fixed 
likelihood coefficient. 
The accuracy of the quantile Qp esti-
mation obtained using formula (1), 
measured by the length of the con-
fidence interval obtained, for very 
small and very large orders p may 
prove to be unsatisfactory, particular-
ly in the case of heavy-tailed distribu-
tions. The bootstrap methods allow 

obtaining a more accurate estimations 
of quantiles.
Among bootstrap methods, one can 
distinguish parametric, nonparamet-
ric and semiparametric methods. For 
estimating higher-order quantiles, 
semiparametric methods are of con-
siderable relevance, since they use the 
information on the distribution class of 
the right tail of the variable with which 
the size of losses is identified, and fur-
ther, they guarantee the occurrence of 
large values of the random variable in 
the bootstrap samples generated. As 
a counterpart, if the estimation refers 
to lower-order quantiles, it is import-
ant that small values of the left tail of 
the distribution of the variable tested 
occur in bootstrap samples. The simu-
lation analysis, whose results have 
been presented in the paper, allow for 
certain conclusions concerning the ef-
fectiveness of bootstrap procedures, 
especially of the semiparametric boot-
strap method.

Risk Measurement 
Using VaR Method

The value at risk measure is defined as 
such loss in the market value of a fi-
nancial instrument, portfolio or invest-
ment that the probability of reaching 
or exceeding it, in a certain time inter-
val, is equal to the pre-determined tol-
erance level. Thus, if Wt , Wt+1 denote 
the price of the instrument under dis-
cussion or the investment value, re-
spectively, at the moment t and t+1, 
the VaR can be expressed as follows:
P(Wt+1 ≤Wt −VaR) ≤ p , (2)

where p∈(0,1)  is the fixed tolerance 
level.
If the loss distribution, that is the dis-
tribution of the variable Xt =Wt+1 −Wt , 
has been determined using a known 
distribution function F, then the Value 
at Risk can be determined based 
on the formula below: 
VaR = −F −1( p) . (3)

P(X (r )
(n) ≤Qp ≤ X (s)

(n) ) = n
i

⎛

⎝⎜
⎞

⎠⎟
ip

i=r

s−1
∑ (1− p)n−i = 1−α
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This approach stems from the static 
risk management, where only uncon-
ditional distribution of the random 
variable is anlaysed. The methods of 
value at risk estimation thus defined 
have been shown, e.g. in works of: T. 
Bałamut, 2002; C. Domański, 2011, 
pp. 142-152.
In literature there are more complex 
methods of VaR estimation illustrated 
using information on the properties 
of the distribution of rates of return 
on shares, i.e. leptokurtosis, the left 
tail of the distribution is heavier than 
the right tail (which implies that the 
probability of having large, atypical 
changes of the rates is bigger than if 
the rates of return were to come from 
a normal distribution), skewness of 
the rates of return distribution (the 
distributions which are most frequent-
ly observed are right skewed), volatil-
ity aggregation effect (which means 
that both small and large shifts in rates 
occur in series), or the effect of a nega-
tive correlation between the level of 
rates and the volatility level, the so 
called leverage effect. Owing to the 
specificity of the methods examined in 
the paper, that kind of properties were 
not taken into account in the analysis.

Bootstrap Methods of 
Quantile Estimation

Bootstrap methods are applied in the 
estimation of parameters of a random 
variable’s distribution, when there is 
no information about the distribution 
class and when it is not possible to use 
the asymptotic properties of estima-
tors of the parameters which are being 
estimated.
Let X be a random variable of an un-
known distribution F with which we 
identify the population under study, 
and let X1,X2 ,...,Xn  be a simple sam-
ple drawn from this population. More-
over, let 1−α  be the likelihood coeffi-
cient determined.

One of the nonparametric bootstrap 
methods of estimating order p quan-
tile of the random variable X is the 
percentile method (C. Domański, K. 
Pruska, 2000, pp. 262-264). The meth-
od involves generating, on the basis 
of the random sample X1,X2 ,...,Xn , 
N bootstrap samples X *1,X

*
2 ,...,X

*
n , ac-

cording to the bootstrap distribution 
given by: 

P X ** = x1( ) = 1n ,  for i = 1,2,…,n,  (4)

where x1,x2 ,...,xn  are elements of the 
drawn sample.
Following that, on the basis of each 
bootstrap sample, the quantile X *p ,k  of 
order p is determined, where 
k = 1, 2,…, N. The sequence of sorted 
quantiles X *p ,1,...,X

*
p ,N  thus obtained al-

lows approximating the sample p 
quantile distribution. The quantiles of 
α
2

 order and 1− α
2

that is statistics 

X *a
2
;N

 and X *
1−a
2
;N

 are used to construct 

the confidence interval for Qp quan-
tile, given by:

P X *α
2
;N
<Q < X *

1−α
2
;N

⎛

⎝⎜
⎞

⎠⎟
≈1−α . (5)

The number of replications N is select-
ed so that Nα

2
 may be an integer, then 

the quantile X
*
a
2
;N  is the value of the 

X *p ,1,...,X
*
p ,N , whereas quantile X *

1−a
2
;N

 is 

the value of the order statistic of rank 
N − Nα

2
.

This way of estimation may not be ef-
fective when estimating Qp quantiles 
for large and small values of p because 
the bootstrap samples which are gen-
erated may not include observations 
of large and small values, respective-
ly, which will not allow obtaining 
a “good” approximation of the distri-
bution tail, and, by inference, a “good” 
estimation of the distribution of the 
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quantile considered. In those situa-
tions, the semiparametric approach 
can be of help.
The semiparametric estimation meth-
od is distinguished by double boot-
strap simulations. While estimating 
high-order quantiles, n–k bootstrap 
sample values below the fixed thresh-
old u are generated from the empiric-
al distribution Fn , whereas k values, 
which are over the threshold, from the 
distribution that takes into account 
the asymptotic properties of the tail 
distribution (M. D. Pandey et al., 2001, 
2003).
In this case the distribution function of 
the bootstrap distribution has the fol-
lowing form:

if x>u,
if x≤u, (6)

where Fn  denotes the empirical distri-
bution function, while F0  denotes the 
distribution function of the general-
ized Pareto distribution GPD(ξ ,β ) .
One usually assumes as the thresh-
old value u, the value of at least 0.9 
quantile.
Since the distribution function of the 
generalized Pareto distribution is ex-
pressed by the following formula: 

F0(x) =
1− 1+ ξx

β
⎛
⎝⎜

⎞
⎠⎟

− 1
ξ

1− exp − x
σ

⎛
⎝⎜

⎞
⎠⎟

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

for ξ ≠ 0

for ξ = 0  (7)

then the estimated distribution func-
tion (6) is given by:
• for ξ ≠ 0

F̂ *(x |u) = 1− k
n
1+ ξ̂ x − u

β̂
⎛

⎝⎜
⎞

⎠⎟

− 1
ξ

 for x>u, (8)

• for ξ = 0 :
F̂ *(x |u) = 1− k

n
exp − x − u

β̂
⎛

⎝⎜
⎞

⎠⎟
, (9)

where k denotes the number of ele-
ments over the fixed threshold value in 
the sample consisting of n-elements, 

with ξ̂ ,β̂  being the estimators of par-
ameters  GPD(ξ ,β )  respectively.
Therefore p quantiles have the follow-
ing form:

 for ,

 (10)
 for .

The values of parameters ξ ,β  are 
estimated using the moment meth-
od or probability-weighted moment 
method, conditional on the informa-
tion on the existence of the first and 
second order- moments (D. Pekasie-
wicz, 2015, pp. 75–89). When , 
parameter ξ ,β  can be estimated using 
the maximum likelihood method.

Comparative Analysis of the 
Estimation Accuracy of the Quantiles 
Obtained Using Bootstrap Methods 

The aim of the studies conducted 
is to compare the length of confi-
dence intervals generated using the 
bootstrap methods and the classical 
nonparametric estimation method 
(formula (1)), and to compare the es-
timated probabilities of covering the 
theoretical quantile value by the inter-
vals obtained.
The at least 0.95 quantiles were esti-
mated for random variables character-
ized by heavy-tailed distributions. For 
the analyses, the following distribu-
tions have been chosen:
• Student’s t S(k), where k is the 

number of degrees of freedom, 
• Pareto Pa(θ, a), where θ, a > 0,
• Log-gamma LG( p,λ,µ) , where 

p,λ > 0,µ ∈R  
The choice of the distribution classes 
is connected with the various proper-
ties of the distributions – Student’s t 
is a symmetric distribution, whereas 
Pareto and Log-gamma distribution 
are characterized by their asymmetry. 
Moreover, in financial analyses, for 

F *(x |u) =
(1− Fn(u))F0(x)+ Fn(u),

Fn(x),

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

X p;n =
u + β̂

ξ̂
n
k
(1− p)⎛

⎝⎜
⎞
⎠⎟

−ξ̂

−1
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

u − β̂ ln n
k
(1− p)⎛

⎝⎜
⎞
⎠⎟

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

ξ̂

ξ̂ ≠ 0

ξ̂ = 0

ξ̂ = 0
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example, for the approximation of 
the distributions of the rates of return 
on shares, Student’s t distribution and 
a skew- Student’s t distribution are 
applied (cf. Piontek, 2005). Thus, the 
results of the analyses focusing on the 
estimation of the quantiles of the Stu-
dent’s t distribution used to determine 
VaR are significant. Also, the results 
obtained for the asymmetric distribu-
tion quantiles are also relevant as the 
empirical distributions of logarithmic 
rates of return have precisely this kind 
of feature.
The samples comprising at least 1000 
elements were included in the analy-
ses. The size of samples must be large 
because it is necessary to estimate the 
parameters of the generalized Pare-
to distribution. For ξ ,β  parameters 
estimation, the probability-weighted 
moment method and moment meth-
od were used (J.M. Landwehr et al., 
1979). 
The construction of the nonparamet-
ric and semiparametric bootstrap con-
fidence intervals has the effect that 
these methods can be examined and 
compared only through simulation 
analyses; therefore, the confidence 
interval length and the probability 
γ that the true value of quantile is 
within the interval determined, were 
estimated by having the estimation 
procedure repeated a 1000 times. This 
probability should be roughly equal 
to the fixed likelihood coefficient 1−α .
For the classic nonparametric estima-
tion procedure, the confidence inter-
val length was determined by comput-
ing the expected values of the order 
statistics X (985)

(1000) , X (998)
(1000) , being the low-

er and upper end of the confidence 
interval, respectively. The following 
formula was used:

where g( i)
(n) (x)  is a density function of 

the order statistic X ( i)
(n) , whereas f, F 

are, respectively, the density function 
and distribution function of the vari-
able X.
The statistics ranks were determined 
such that the estimation likelihood 
was equal 0.9495.
Table 1 contains the results of the stud-
ies carried out with a view to evaluate 
the efficiency of the bootstrap estima-
tion method for 0.99 quantiles of the 
selected distributions, with the con-
fidence coefficient equal to 0.95. The 
size of the sample was 1000 elements. 
The parameters were selected in such 
a way as to include distributions which 
have and those which do not have the 
expected value. For the Pareto and 
Log-gamma distributions, the expected 
value equals 3, while for the Student’s t 
distribution 0, if, of course, it exists.
The findings of the studies show that 
for the distributions which were ana-
lysed the semiparametric estimation 
methods proved to provide the most 
accurate estimations of 0.99 quantiles. 
The confidence intervals obtained 
using the nonparametric percentile 
bootstrap method were character-
ized by having a slightly bigger span. 
Thus, for estimating 0.99 quantiles of 
the Pareto, Log-gamma or Student’s t 
distributions we may expect a much 
greater precision in estimations when 
applying bootstrap methods com-
pared to the nonparametric method 
based on order statistics determined 
on the basis of the value of the sample 
drawn. Moreover, value γ(II) proved 
to be slightly closer to the determined 
confidence coefficient than γ(I). Value 
γ(III) was not distinguished in Table 
1, for it equals exactly 0.9495, which 
results from the confidence interval 
construction.

E X ( i)
(n)( ) = xg( i)

(n)

−∞

∞

∫ (x)dx = n!
(i −1)!(n− i)!

x[F(
−∞

∞

∫ x)]i−1[1− F(x)]n−i f (x)dx,i = 985,998,n = 1000 (11)
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Table 1: The confidence interval length and estimation likelihood of 0.99 quantiles 

Distribution

Nonparametric bootstrap 
percentile method 

Semiparametric 
bootstrap method 

Classic 
method 

d (I) γ(I) d (II) γ (II) d (I)

S(3) 2.1148 0.940 1.9098 0.955 3.7491

S(3) 4.5764 0.910 4.0748 0.960 9.2162

S(3) 40.6448 0.931 29.0684 0.892 137.9481

Pa(2; 3) 3.8876 0.937 3.4622 0.949 6.9966

Pa(1.5, 2) 9.4868 0.924 8.1446 0.935 19.3847

Pa (1; 1.5) 19.0926 0.929 15.0672 0.944 41.2171

LG (1; 0.5; 2) 6.4478 0.931 5.5168 0.952 12.9231

LG (2; 0.5; 0) 19.8290 0.921 17.3168 0.939 42.8796

LG (1; 0.75; 0) 31.6229 0.924 23.6356 0.902 77.5623

Source: Author’s own study.

The problem, however, constitute 
super-heavy tailed distributions of the 
LG (1; 0.75; 0), S(1), or more gener-
ally S(k) for k ≤ 1, for which the appli-
cation of bootstrap methods increases 
the estimation accuracy, yet the esti-
mation likelihood decreases. This type 
of distributions need further investiga-
tion and modification of the estima-
tion procedures.

Bootstrap Method Application 
in VaR Estimation of the Rate of 
Returns of Selected WSE Indices

The bootstrap methods under discus-
sion were applied to estimate value at 
risk for logarithmic daily rates of re-
turn on shares of Clothing Company 
“Bytom” (Zakłady Odzieżowe Bytom) 
and Computer Works ELZAB (Zakłady 
Urządzeń Komputerowych ELZAB 
S.A.).Variable Rt = ln

Pt
Pt−1

 was analysed, 

where Pt ,Pt−1  denote share prices at 
the time t and t–1, respectively.
Fig. 1 and 2 illustrate changes in daily 
logarithmic rates of return on shares 
between 29 March 2011 and 16 Oc-
tober 2015. The data used were ob-
tained from http://stooq.pl/q/?s=btm 
oraz http://stooq.pl/q/?s=elz.
In estimating value at risk for daily 
logarithmic rates of return on shares 
traded on the WSE, the approaches 
chosen were constrained to the fol-
lowing: nonparametric and semipara-
metric, building on the logarithmic un-
conditional distributions of the rates 
of return on shares.
According to formula (3), for estimat-
ing value at risk low-order quantiles 
(order p) should be used, that is, those 
from the left tail of the empirical dis-
tribution of the logarithmic rates of 
return. In order to be able to employ 
the semiparametric bootstrap meth-
od, a variable Yt = −Rt  was introduced 
and (1-p)th quantiles were estimated, 



Dorota Pekasiewicz | Bootstrap Estimation Methods of Value at Risk

129

Figure 1: Daily logarithmic rates of return on shares of Clothing 
Company “Bytom” between 29.03.2011 – 16.10.2015

Source: Author’s own study.

Figure 2: Daily logarithmic rates of return on shares of Computer 
Works ELZAB between 29.03.2011 – 16.10.2015

Source: Author’s own study.

that is, the quantiles from the right 
tail of the empirical distribution of 
the random variable Yt = −Rt. Introducing 
the variable Yt = −Rt allowed for using the 
generalised Pareto distribution for the 

estimation of the right tail distribution 
(over 0,9 quantile). 
In the application of a semiparamet-
ric bootstrap estimation method, it is 
necessary to decide as to the form of 
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the distribution function used for gen-
erating the bootstrap samples. Choos-
ing either (7) or (8) formula has to be 
based on the information about the 
distribution Yt = −Rt (whether it is a heavy-
tailed distribution, i.e. ξ̂ > 0 , or a thin-
tailed distribution, i.e. ξ̂ = 0 ) or it has 
to be based on the extreme index esti-
mated value ξ̂ = 0.
For the preliminary estimation of par-
ameter ξ̂ = 0 a moment estimator was ap-
plied in the form:

ξ̂ Mm,n = Mm
(1) +1− 1

2
1−

Mm
(1)( )2

Mm
(2)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1

, (12)

where Mm
( l ) = 1

m
ln X (n)

(n−i+1) − ln X
(n)
(n−m)( )

i=1

m
∑

l

 

for l = 1, 2, whereas order statistics 
 were determined based on the 

n-elements simple sample X1,X2 ,...,Xn .
For the variable Yt  determined on the 
basis of the daily logarithmic rates of 
return on shares of Clothing Company 
“Bytom”, ξ̂ = 0=0.1832 was obtained, 
while for the variable associated with 
the rates of return of shares of Com-
puter Works ELZAB, it was ξ̂ = 0=0.2639. 
Since ξ̂ = 0<0.5, for the estimation of the 
parameters of the generalized Pareto 
distribution the moment method was 
used. 

The confidence intervals for value at 
risk of investing in the shares of the 
companies under discussion at the tol-
erance level of 0.01, and the interval 
lengths obtained have been included 
in Table 2.

Conclusion 

The application of bootstrap methods 
allows obtaining the interval estima-
tion of quantiles which are used to de-
termine value at risk. The simulation 
analysis refer to the situation when 
the random variables specifying the 
amount of losses are characterized 
by distributions which belong to the 
distribution group with heavy tails. In 
the majority of cases analysed, the 
bootstrap estimation methods are 
more effective compared to the clas-
sic nonparametric method, for the 
confidence intervals obtained have 
much smaller span while having sim-
ilar estimation likelihood. The appli-
cation of the semiparametric boot-
strap method proved to be the most 
effective, for the confidence intervals 
which were obtained had the smallest 
span. Moreover, the probabilities with 
which the intervals, obtained through 
the semiparametric method, covered 

Table 2. Confidence intervals for VaR of the selected WSE shares

Type of shares Estimation method Confidence interval Confidence 
interval length 

Clothing Com-
pany „Bytom”

Bootstrap percentile (0.0984; 0.1591) 0.0607

semiparametric (0.1064; 0.1515) 0.0451

classic (0.1161; 0.2183) 0.1022

Computer Works 
ELZAB S.A.

Bootstrap percentile (0.0733; 0.1068) 0.0335

semiparametric (0.0785; 0.1058) 0.0273

classic (0.0995; 0.1517) 0.0722

Source: Author’s own study 

X (n)
(n−i)
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the estimated value of the quantile 
were closer to the likelihood coeffi-
cient determined than the equiva-
lent probabilities for the percentile 
method. The only thing that is need-
ed is to choose properly the thresh-
old value for a given sample size. The 
number of elements in excess of the 
threshold cannot be too small for then 
large errors occur, associated with the 
estimation of parameters of the gen-
eralized Pareto distribution, which is 
used to estimate the distribution tail 
of the variable anlaysed. In the cases 
demonstrated, this number was 100, 
since the threshold was determined at 
the level of 0.9 quantile, proving to be 
sufficient in size.
In some situations the increase in 
the estimation accuracy as the result 
of the bootstrap method application 
involved the decrease in the estima-
tion likelihood, e.g. for the analyses of 

random variables with very heavy dis-
tributions, e.g. Cauchy (S(1)), or other 
Student’s t distributions with the 
number of freedom degrees being not 
more than 1, and thus extreme index  
ξ  being bigger than 1.
The results of the empirical tests are 
consistent with the results of the 
simulation analyses. The accuracy 
of the interval estimation of value at 
risk for daily logarithmic rates of re-
turn on shares of Clothing Company 
“Bytom” and Computer Works ELZAB 
is the greatest if the semiparamet-
ric bootstrap method is applied. For 
other stocks quoted on the Warsaw 
Stock Exchange the distributions of 
their daily logarithmic rates of return 
are not characterized by high values 
of index ξ , thus, it appears advisable 
to apply the bootstrap methods out-
lined in the paper for the estimation 
of value at risk.
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Bootstrapowe metody estymacji wartości zagrożonej ryzykiem

Abstrakt
Przedziałowe metody bootstrapowe mogą być stosowane do sza-
cowania wartości zagrożonej ryzykiem, definiowanej jako kwan-
tyl ustalonego rzędu rozkładu zmiennej losowej określającej wielkość 
strat z inwestycji. Zaletą tych metod jest możliwość ich zastosowania  
w przypadku braku informacji o klasie rozkładu badanej zmiennej. Szczególne 
znaczenie ma semiparametryczna procedura estymacji wykorzystywana do 
estymacji kwantyli o wysokich rzędach. Gwarantuje ona pojawienie się w ge-
nerowanych próbach bootstrapowych dużych wartości. W artykule zaprezen-
towane zostały nieparametryczne i semiparametryczne bootstrapowe meto-
dy estymacji wraz z wynikami badań symulacyjnych dotyczących szacowania 
kwantyli wyższych rzędów rozkładów o grubych ogonach. Analizowane me-
tody prowadzą do uzyskania oszacowań o większej dokładności w porówna-
niu z klasyczną nieparametryczną procedurą estymacji. Rozważane procedury 
zostały wykorzystane do szacowania VaR dziennych stóp zwrotu wybranych 
akcji notowanych na Giełdzie Papierów Wartościowych w Warszawie.

Słowa kluczowe: estymacja bootstrapowa, dokładność oszacowania, wartość zag-
rożona ryzykiem


