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Abstract

For a random variable with bounded support, the kernel estimation of func-
tional characteristics may lead to the occurrence of the so-called boundary 
effect. In the case of the kernel density estimation it can mean an increase 
of the estimator bias in the areas near the ends of the support, and can lead 
to a situation where the estimator is not a density function in the support 
of a random variable. In the paper the procedures for reducing boundary 
effect for kernel estimators of density function, distribution function and 
regression function are analyzed. Modifications of the classical kernel esti-
mators and examples of applications of these procedures in the analysis of 
the functional characteristics relating to gross national product per capita are 
presented. The advantages of procedures are indicated taking into account 
the reduction of the bias in the boundary region of the support of the ran-
dom variable considered.

Introduction

In statistical analyses concerned with 
economic, medical, social or technic-
al issues the random variables under 
discussion may be characterized by 
having a bounded support. Bound-
ing the support of a random variable 
to specified intervals, for example: 
[a;∞),  (-∞;b],  [a;b] results from the 
specificity of those variables. What fol-
lows is that some economic indicators, 

while describing relationships be-
tween economic sizes and being wide-
ly used in economic situation analyses 
and in predictions of future economic 
changes, are characterized by having 
bounded support type [0;1]  (Gini co-
efficient, corruption perception index) 
or [0;∞)  (research and development 
expenditures of companies, the num-
ber of dwellings completed).
Other examples of indicators used in 
statistical analyses of random variables 
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with bounded support include: dis-
ease entity duration, diagnostic indi-
cators for specific disease entities, so-
cial indicators of marginalization and 
social exclusion and efficiency index of 
technical equipment.
Classical procedures which take into 
account the assumption that the form 
of the functional characteristics is 
known, being defined as parametric 
procedures, are fairly often applied 
in practice mainly on account of their 
theoretical and computational simpli-
city and availability through suitable 
tools in statistics and econometrics 
packages. However, in many research 
situations risk associated with adopt-
ing the assumption on the specified 
form of the characteristics analyzed 
constitutes a serious argument in the 
decision-making process on the nature 
of statistical procedures for the bene-
fit of the nonparametric procedures.
The estimation of functional char-
acteristics of random variables with 
bounded support can lead to the oc-
currence of the so called boundary 
effect, specified as the lack of esti-
mation consistency for x  which are 
near the ends of the support, that 
is for x  belonging to the so called 
boundary region. In the boundary 
region there are fewer observations 
subject to averaging, which has an 
impact on the variance and estimator 
bias. The boundary effect plays a par-
ticularly important role for small and 
medium-sized samples, for then a sig-
nificant part of observations may be 
influenced by the boundary effect (cf. 
Härdle, 1994, pp. 159-162). This prob-
lem concerns, in general, the group 
of estimation methods described as 
smoothing methods, and, especially, 
nonparametric methods, including the 
kernel ones applied in the estimation 
of such functional characteristics like 
density function, distribution function 
and regression function.
The approach presented here of the 
kernel estimation of density function 

and distribution function of random 
variables with bounded support fo-
cuses on one-dimensional random 
variable while a multi-dimensional 
analysis is a natural extension of those 
procedures.
If we determine kernel estimator 
with an unknown density function 
of the population from which the 
sample x1,x2 ,...,xn  is drawn, we need 
to adopt the assumption on appro-
priate smoothness degree of the un-
known density function, at the least 
the existence of a second continuous 
derivative of that function. In the ker-
nel density estimation, the occurrence 
of the boundary effect can lead to the 
discordance between the support of 
the random variable and that of the 
density estimator, which has large 
practical implications, particularly for 
graphical presentation of the non-
parametric estimation results. This 
discordance may result in mistaken 
interpretation of a specific estimator 
of the functional characteristics of 
the random variable. For random vari-
ables which are economic in nature 
and which often take on only non-
negative values ([0;∞))  even a properly 
constructed kernel density estimator 
can take on values other than zero, 
also on (−∞;0) . Not only is this pos-
sible when the kernel function with an 
unbounded support is applied in the 
construction of the kernel density esti-
mator, but even when the kernel func-
tion support is bounded (cf. Kulczycki, 
2005, pp. 94-97). The approach in-
volving cutting the estimator at point 
0 and assuming that f̂ (x) = 0  for x < 0  
has the effect that the estimator does 
not satisfy the condition of integrabil-
ity to unity in the support of the ran-
dom variable.
Point consistence for the kernel density 
estimation for one-dimensional ran-
dom variable X  with support [0;1]  is 
discussed, for example, in the work of 
Qi Li and Jeffrey Scott Racine (Li, Racine, 
2007, pp. 30-32). It can be shown that 
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for x ∈[0;1]  there is f̂ (x)− f (x) = op (1) 1, 
whereas for x belonging to the bound-
ary region of the support of the random 
variable the mean squared error of the 
kernel density estimator does not satis-
fy the condition MSE f̂ (x)⎡⎣ ⎤⎦ = op (1) . For 
x = 0  and for f (0) > 0  the expected 
value and the kernel density estimator 
bias are as follows:

E f̂ (0)⎡⎣ ⎤⎦ =
f (0)
2

+ο(h) 2,

B f̂ (0)⎡⎣ ⎤⎦ = E f̂ (0)⎡⎣ ⎤⎦ − f (0) =
− f (0)
2

+ο(h) ,

where h  is a smoothing parameter in 
the kernel density estimator.
It is therefore necessary to introduce 
suitable modifications to the classical 
kernel methods in the nonparametric 
estimation, so that the kernel estima-
tor is consistent.
The modifications of the classical ker-
nel method may involve data trans-
formation, and the application of 
a pseudo-data method, local linear 
method or jackknife method. How-
ever, the most frequently used meth-
ods are those consisting in employing 
the so called boundary functions of 
the kernel and the reflection method.
The kernel density estimator with the 
boundary kernel function is of the 
form (assuming that x ∈[0;1] ):

f̂ (x) = 1
n

Kh(x,xi )
i=1

n
∑ ,  (1)

where x1,x2 ,...,xn  is a random sample 
chosen from the population with an 
unknown density function f (x) , h is 
a smoothing parameter, while Kh(x,xi )  
a boundary kernel function of the 
form:

1 For a sequence of real random variables 
n=1
∞{xn}  Xn = ο p (1) if Xn

p⎯ →⎯ 0 .
2 For a nonnegative constant 
n,  an = ο(bn ) if 

an
bn

= ο(1)(an ≤Cbn  for a cer-
tain constant C  and for all sufficiently 
large n .

Kh(x,xi ) =

1
h
K
xi − x
h

K (u)du
− x
h

∞
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1
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K
xi − x
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where K (•)  is the kernel function of 
a second-order, that is, satisfying the 
following conditions:
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 (3)

It can be shown that for the random 
variable with support [0;1]  and for x  
from the boundary region x ∈[0;h]  the 
expected value and kernel density es-
timator bias (1) are as follows:
E[ f̂ (x)]= f (x)+O(h) , 
B[ f̂ (x)]= O(h) .
The bias of the kernel estimator (1) 
approaches zero for n→∞ . Unfortu-
nately, applying the density function 
estimator with boundary kernel func-
tion (2) may lead to situations where 
the density estimator takes on nega-
tive values.
The reflection method is one of the 
fairly frequently methods applied in 
practice of bias reduction in the kernel 
estimation of functional characteris-
tics. The modification of the classical 
kernel density estimator consists in 
isolating that part of the kernel func-
tion which is outside the interval of 
the support of the random variable 
and then on its symmetrical reflec-
tion. This reflection is done in relation 
to the boundary of the support a  (in 
the case of the left-hand boundary of 

{Xn}
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the support of the random variable 
[a;∞))  or b  (in the case of the right-
hand boundary of the support (−∞;b]) .
It can be shown (Kulczycki, 2005, pp. 
94-97) that the estimator taking into 
account the reflection method of the 
kernel function has a support which is 
the same as the support of the random 
variable. After having complemented 
any derivative at point a  (for the left-
hand boundary of the support of the 
random variable [a;∞) ) or b  (for the 
right-hand boundary of the support 
(−∞;b])  with the null value, the deriva-
tive becomes continuous. The estima-
tor taking into account the reflection 
method has a continuous derivative of 
a specific order, if the kernel function 
has a continuous derivative of a specif-
ic order.
The data transformation method, 
pseudo-data method and local linear 
method have been outlined in the 
works of, for example: Bernard Silver-
man (Silverman, 1986, pp. 29-32), 
Matt Wand and Chris Jones (Wand, 
Jones, 1995, pp. 46-49), Chris Jones 
(Jones, 1993), Chris Jones and P. Fos-
ter (Jones, Foster, 1996) and Ivanka 
Horova, Jan Koláčk and Jiři Zelinka 
(Horová, Koláček, Zelinka, 2012, pp. 
39-41). The application of the jack-
knife method in the nonparametric 
kernel estimation of regression func-
tion has been demonstrated, among 
others, by Wolfgang Härdle (Härdle 
1994, pp. 159-162) and Herman Bier-
ens (Bierens, 1987, pp. 99-144). 

Estimation of Density Function

The Rosenblatt-Parzen’s classical ker-
nel density estimator based on a ran-
dom sample x1,x2 ,...,xn  drawn from the 
population with an unknown density 
function f (x)  is given by the form 
(Silverman, 1996, pp. 13-19; Wand, 
Jones, 1995, pp. 11-14):

f̂ (x) = 1
nh

K
x − xi
h

⎛
⎝⎜

⎞
⎠⎟i=1

n
∑

where h  is a smoothing parameter 
such that for n→∞ , h = h(n)→ 0  and 
nh→∞ , while K (•)  is the kernel func-
tion having the properties (3). If the 
kernel function is, in addition, non-
negative and symmetric about zero, 
then: f̂ (x) ≥ 0  and f̂ (x)dx

−∞

∞

∫ = 1 . The 

properties and the procedures as re-
gards the choice of the smoothing par-
ameter and kernel function are pre-
sented, for example, in the work of 
Czesław Domański, Dorota Pekasie-
wicz, Aleksandra Baszczyńska and 
Anna Witaszczyk (Domański et al., 
2014).
The kernel density estimator with the 
reflection kernel function for a ran-
dom variable with the support [0;∞)  is 
of the form:

f̂R (x) =
1
nh

K
x − xi
h

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

i=1

n
∑ + K

x + xi
h

⎛
⎝⎜

⎞
⎠⎟
⎤

⎦
⎥ . (5)

The generalization of the kernel es-
timator which takes into account the 
reflection of the kernel function (5) 
proposed by Rohan Karunamuni and 
Tom Alberts (Karunamuni, Alberts, 
2005) for a random variable with the 
support [0;∞)  is defined as:

,
 (6)

where gi ,  i = 1,2  are nonnegative, 
continuous and increasing functions 
on the interval [0;∞)  (cf. Karunamuni, 
Zhang, 2005).
It can be noticed that the gener-
alization (6) may be viewed simul-
taneously as a generalization of the 
reflection method and of the data 
transformation method, as the ker-
nel estimator is applied to the set 
{g(x1),g(x2 ),...,g(xn )} , and transforma-
tion g  is so selected that the bias in 
boundary area is of the order O(h2 ) .
Estimator (6) is a consistent estima-
tor of density function f , having 
the bias of the order O(h2 ) . The an-
alysis of the properties of the kernel 
density estimator taking into account 

f̂GR (x) =
1
nh

K
x − g1(xi )

h
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

i=1

n
∑ + K

x + g2(xi )
h

⎛
⎝⎜

⎞
⎠⎟
⎤

⎦
⎥
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the reflection method is illustrated in 
the works of, for example, Matt Jones 
(Jones, 1993), Matt Jones and Foster 
(Jones, Foster, 1996), Martina Albers 
(Albers, 2012) and Aleksandra Baszc-
zyńska (Baszczyńska 2015).

Distribution Function Estimation

Let X1,X2 ,...,Xn  be independent ran-
dom variables with a distribution func-
tion F  and density function f . Let 
x1,x2 ,...,xn  be a random sample drawn 
from the population having the distri-
bution function F .
The kernel estimator of the distribu-
tion function is of the form:

F̂(x) = 1
n
W

x − xi
h

⎛
⎝⎜

⎞
⎠⎟i=1

n
∑ , (7)

where the smoothing parameter is 
specified in the same way as in the 
kernel density estimation, whereas  
W (x) = K (t)dt

−1

x

∫  for K (t) ≥ 0 , being a un-

imodal and symmetric second-order 
kernel function having the support 
[−1;1] .
The kernel distribution function esti-
mator taking into account the reflec-
tion of the kernel function for the ran-
dom variable with support [0;∞)  and 
the generalized distribution function 
estimator are as follows (cf. Koláček, 
Karunamuni, 2009, 2012): 

F̂R (x) =
1
n

W
x − xi
h

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

i=1

n
∑ −W

x + xi
h

⎛
⎝⎜

⎞
⎠⎟
⎤

⎦
⎥ , (8)

F̂GR (x) =
1
n

W
x − g1(xi )

h
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

i=1

n
∑ +W

x + g2(xi )
h

⎛
⎝⎜

⎞
⎠⎟
⎤

⎦
⎥

where the smoothing parameter and 
the distribution function W (x)  are 
specified, as is the case for estima-
tor (7), whereas the functions gi  for 
i = 1,2  are nonnegative, continuous 
and increasing functions determined 
on [0;∞) .
It can be shown that the variances of 
estimators (7) and (9) are of the same 
order, whereas the bias of estimator 

(9) is of order O(h2 ) , which implies 
that estimator (9) reduces the bias 
effect in the kernel estimation of the 
distribution function, while the bias in 
the boundary region is of the same or-
der as the bias of the estimator in the 
internal region.

Regression Function Estimation

In the regression model being of the 
form:
Yi = m(xi )+ ε i , for i = 1,...,n , n∈N , 
E(ε i ) = 0 , D2(ε i ) =σ

2 > 0 , 
the approximation of an unknown 
function m  can be carried out using 
the kernel estimation with a smooth-
ing parameter h  and kernel function 
K .
Let xi =

i −1
n

 for i = 1,...,n  on [0;1] .

Kernel regression estimators are, 
among others:
a) Nadaraya-Watson estimator:

m̂NW (x) =

1
h

K
x − Xi
h

⎛
⎝⎜

⎞
⎠⎟
Yi

i=1

n
∑

1
h

K
x − Xi
h

⎛
⎝⎜

⎞
⎠⎟i=1

n
∑

, (10)

b) Gasser-Müller estimator:

m̂GM (x) = Yi
1
hsi−1

si

∫ K t − x
h

⎛
⎝⎜

⎞
⎠⎟i=1

n
∑ dt , (11)

where:

si =
xi + xi+1
2 , i = 1,...,n−1 , s0 = 0 , sn = 1 , 

moreover, the smoothing parameter 
h  and kernel function K  are speci-
fied in the same way as for the kernel 
density function estimation.
The kernel regression estimator tak-
ing into account the reflection of the 
kernel at points xi , i = 0,...,n+1  for the 
random variable having the support 
[0;1]  is of the form:

m̂GMR (x) =
1
h

Y j K x − u
h

⎛
⎝⎜

⎞
⎠⎟
du

sj−1

s j

∫
j=1

3n
∑ , (12)

where:

s j =
xi + xi+1
2

, j = 1,...,3n−1 , s0 = −1 , s3n = 2 . 

, (9)

s j =
xi + xi+1
2
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The analysis of the properties of estima-
tor (12) along with the proposal of the 
optimum smoothing parameter is pre-
sented in the works of, among others, 
Jan Koláček and Jitka Poměnkova 
(Koláček, Poměnková, 2006). 

The Example of the Boundary 
Reduction Method Application 
in the Kernel Estimation of 
Chosen Functional Characteristics 
of Random Variable

In order to compare the classical pro-
cedures with the procedures taking 
into consideration the reflection meth-
od, estimators of the selected function-
al characteristics of a random variable 
were determined for the data on gross 
national product per capita converted 
to U.S. dollars, which made it possible 
to make comparisons between a var-
iety of economies. To smooth fluctua-
tions in prices and exchange rates, Atlas 
method of conversion was employed.
The data stem from the records of the 
World Bank (http://www.worldbank.
org, [10.10.2015]).
In the kernel estimation concerned 
with the density function, distribution 
function and regression function (in the 
classical approach and estimation with 
reflection) the second-order kernel 

functions were used – the Gaussian, 
Epanechnikov and quartic. The 
smoothing parameter was determined 
using the Silverman and cross-valida-
tion method. Choosing precisely those 
parameters of the kernel method (ker-
nel function and smoothing parameter) 
had its reason in the fact that those are 
the kernel method parameters which 
are most frequently used in practice 
while ensuring that proper results of 
the kernel estimation procedures are 
obtained. The application of different 
parameters of the kernel method pro-
vided the opportunity to choose the 
best method for specific data.
The use of data on gross national prod-
uct per capita, both cross-sectional 
for countries across the world and 
time-based for Poland, may constitute 
a procedure applied at the preliminary 
stage of the statistical analysis, form-
ing a starting point for further in-depth 
studies employing, for example, econo-
metric models.
At the first stage, the kernel density 
estimators of the gross national prod-
uct per capita were determined for the 
year 2014, encompassing 180 coun-
tries worldwide. The sample results 
for Epanecznikov kernel function and 
Silverman method are illustrated in Fig-
ure 1.

Fig. 1 Kernel density estimators of gross national product per 
capita in 2014 for 180 countries worldwide

Classical estimator Estimator with reflection

Source: Author’s own study
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Fig. 2 Kernel estimators of the distribution function of gross national 
product per capita in 2014 for 180 countries worldwide

Classical estimator Estimator with reflection

Source: Author’s own study

The second stage involved determin-
ing the distribution function estima-
tors for gross national product per cap-
ita in 2014 for 180 countries across the 
world. The sample results for Epanec-
znikov kernel function and Silverman 
method are illustrated in Figure 2.
Classical kernel estimators, both of 
density function and distribution func-
tion, are characterized by some draw-
backs. It can be easily inferred that 
their support is not consistent with 

the support of the random variable 
(estimators on the left-hand side). 
Introducing a modification consisting 
in reflecting the kernel function elim-
inates this drawback to a considerable 
degree.
At the third stage, the kernel regres-
sion estimators were determined. The 
sample results of the estimation for 
the kernel method parameters, the 
same as in the first and second stage, 
are shown in Figure 3-4.

Fig. 3 Kernel regression estimators of gross national product per capita for Poland in 1990-2014

Source: Author’s own study
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Fig. 4 Kernel distribution function estimators of gross national 
product per capita worldwide in 1962-2014

Source: Author’s own study

Introducing the modification of the 
classical regression estimator con-
sisting in reflecting the kernel function 
has the effect that the kernel estimator 
has a different form, which ensures the 
bias reduction in the region near zero.
In order to assess the impact of the 
sample size on the results of the 

kernel estimation, at the fourth stage, 
the samples comprising 10 elements 
were drawn providing the basis for 
determining kernel density estimators 
for gross national product per capita 
in 2014 for the countries worldwide. 
The results of the kernel density esti-
mation are demonstrated in Figure 5.

Fig. 5 Kernel density estimators of gross national product per capita in 2014 for a 10-element- 
sample, Epanecznikov kernel function, Silverman method for choosing smoothing parameter.

Source: Author’s own study

The impact of the modification taking 
into account the kernel function reflec-
tion is easier to notice in small-sized 
samples. For small-sized samples, the 

contribution of observations for which 
the kernel functions are reflected in 
the boundary region is relatively larger 
than for large samples. Hence, there 
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are such big changes in the estimator’s 
shape after having introduced the ker-
nel function reflection.

Summary

Every smoothing method used near 
the ends of the support of the ran-
dom variable with bounded support 
becomes less accurate. In the case of 
the kernel estimation there is a con-
siderable worsening of the statistical 
properties of the estimator, which is 
caused by cutting off the kernel func-
tion at the boundary point.
In constructing the modification of 
the classical estimator consisting in 
taking into account the reflection of 
this part of the kernel function which 
is not in the support of the random 
variable leads to a considerable 
improvement of the properties of the 
estimator. It is of particular relevance 
for the analyses carried out based 
on the graphic representation of es-
timators obtained. The concordance 
between the support of the estima-
tor and that of the random variable is 
then provided.

The comparative analysis between the 
classical estimators and the kernel es-
timators with reflection clearly shows 
that it is the modified procedures that 
should be commonly applied in prac-
tical studies in the situation when 
a random variable has a bounded 
support.
However, no unequivocal conclusions 
can be made as to the impact of the 
parameters of the kernel method 
(smoothing parameter and kernel 
function) on the form of the estimator. 
The Gaussian kernel function, even 
though being the kernel function with 
unbounded support, yields similar ef-
fects to those of the kernel function 
with bounded support.
The size of a sample is the factor which 
has a large impact on the final form of 
the estimator.
Therefore further investigation ap-
pears necessary, including simulation 
tests allowing one to indicate what 
type of random variable distribution 
and what distribution parameters can 
influence the estimator to the greatest 
extent in the analyses of random vari-
ables with bounded support.
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Redukcja efektu brzegowego w estymacji jądrowej wybranych charakterystyk 
funkcyjnych zmiennej losowej

Abstrakt
Dla zmiennej losowej o ograniczonym nośniku estymacja jądrowa charaktery-
styki funkcyjnej może oznaczać wystąpienie tzw. efektu brzegowego. W przy-
padku estymacji funkcji gęstości oznacza to zwiększenie obciążenia estymato-
ra w obszarze blisko krańców nośnika, jak również prowadzić może do sytuacji, 
że estymator nie posiada pożądanych własności dla funkcji gęstości w nośni-
ku zmiennej losowej. W pracy poddano analizie procedury redukujące efekt 
brzegowy estymatora jądrowego funkcji gęstości, dystrybuanty oraz funkcji 
regresji. Przedstawiono modyfikacje klasycznych estymatorów jądrowych 
oraz zaproponowano zastosowanie tych procedur w analizie charakterystyk 
funkcyjnych dotyczących dochodu narodowego brutto na mieszkańca. Wyka-
zano zalety procedur uwzględniających redukcję obciążenia w obszarze brze-
gowym nośnika rozważanej zmiennej losowej. 

Słowa kluczowe: estymacja jądrowa, efekt brzegowy, metoda odbicia, dochód na-
rodowy brutto na mieszkańca


